Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067503    DOI: 10.1088/1674-1056/ad3dd8
RAPID COMMUNICATION Prev   Next  

Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals

Ming Xi(席明)1,2 and Hechang Lei(雷和畅)1,2,†
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
Abstract  We investigate the evolution of magnetic properties as well as the content and distribution of Mn for Mn(Sb$_{1-x}$Bi$_{x}$)$_{2}$Te$_{4}$ single crystals grown by large-temperature-gradient chemical vapor transport method. It is found that the ferromagnetic MnSb$_{2}$Te$_{4}$ changes to antiferromagnetism with Bi doping when $x \ge 0.25$. Further analysis implies that the occupations of Mn ions at Sb/Bi site Mn$_{\rm Sb/Bi}$ and Mn site Mn$_{\rm Mn}$ have a strong influence on the magnetic ground states of these systems. With the decrease of Mn$_{\rm Mn}$ and increase of Mn$_{\rm Sb/Bi}$, the system will favor the ferromagnetic ground state. In addition, the rapid decrease of $T_{\rm C/N}$ with increasing Bi content when $x \le 0.25$ and the insensitivity of $T_{\rm N}$ to $x$ when $x > 0.25$ suggest that the main magnetic interaction may change from the Ruderman-Kittel-Kasuya-Yosida type at low Bi doping region to the van-Vleck type in high Bi doped samples.
Keywords:  magnetic topological insulator      magnetic properties      antisite defects      chemical vapor transport  
Received:  18 March 2024      Revised:  06 April 2024      Accepted manuscript online:  12 April 2024
PACS:  75.50.Ee (Antiferromagnetics)  
  61.82.Ms (Insulators)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
  72.80.Ga (Transition-metal compounds)  
Fund: Project supported by the Beijing Natural Science Foundation (Grant No. Z200005), the National Key R&D Program of China (Grant Nos. 2022YFA1403800 and 2023YFA1406500), the National Natural Science Foundation of China (Grant No. 12274459), and Collaborative Research Project of Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology.
Corresponding Authors:  Hechang Lei     E-mail:  hlei@ruc.edu.cn

Cite this article: 

Ming Xi(席明) and Hechang Lei(雷和畅) Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals 2024 Chin. Phys. B 33 067503

[1] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[2] Lee W C, Wu C, Arovas D P and Zhang S C 2009 Phys. Rev. B 80 245439
[3] Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D, Richardella A, Hasan M Z, Cava R J and Yazdani A 2009 Nature 460 1106
[4] Biswas R R and Balatsky A V 2010 Phys. Rev. B 81 233405
[5] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[6] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416
[7] Yan J Q, Liu Y H, Parker D S, Wu Y, Aczel A A, Matsuda M, McGuire M A and Sales B C 2020 Phys. Rev. Mater. 4 054202
[8] Hu C, Ding L, Gordon K N, Ghosh B, Tien H J, Li H X, Linn A G, Lien S W, Huang C Y, Mackey S, Liu J Y, Singh B, Agarwal A, Bansil A, Song M, Li D S, Xu S Y, Lin H, Cao H B, Chang T R, Dessau D and Ni N 2020 Sci. Adv. 6 eaba4275
[9] Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H and Zhang Y B 2020 Science 367 895
[10] Deng H M, Chen Z Y, Wołos A, Konczykowski M, Sobczak K, Sit- ńicka J, Fedorchenko I V, Borysiuk J, Heider T, Pluciński Ł, Park K, Georgescu A B, Cano J and Krusin-Elbaum L 2021 Nat. Phys. 17 36
[11] Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S and Wang Y Y 2020 Nat. Mater. 19 522
[12] Xi M, Chen F, Gong C, Tian S, Yin Q, Qian T and Lei H C 2022 J. Phys. Chem. Lett. 13 10897
[13] Liu Y H, Wang L L, Zheng Q, Huang Z L, Wang X P, Chi M F, Wu Y, Chakoumakos B C, McGuire M A, Sales B C, Wu W D and Yan J Q 2021 Phys. Rev. X 11 021033
[14] Wimmer S, Sánchez-Barriga J, Küppers P, Ney A, Schierle E, Freyse F, Caha O, Michalička J, Liebmann M, Primetzhofer D, Hoffman M, Ernst A, Otrokov M M, Bihlmayer G, Weschke E, Lake B, Chulkov E V, Morgenstern M, Bauer G, Springholz G and Rader O 2021 Adv. Mater. 33 2102935
[15] Yan J Q, Okamoto S, McGuire M A, May A F, McQueeney R J and Sales B C 2019 Phys. Rev. B 100 104409
[16] Chen B, Fei F C, Zhang D Q, Zhang B, Liu W L, Zhang S, Wang P D, Wei B Y, Zhang Y, Zuo Z W, Guo J W, Liu Q Q, Wang Z L, Wu X C, Zong J Y, Xie X D, Chen W, Sun Z, Wang S C, Zhang Y, Zhang M H, Wang X F, Song F Q, Zhang H J, Shen D W and Wang B G 2019 Nat. Commun. 10 4469
[17] Pei C Y, Xi M, Wang Q, Shi W J, Gao L L, Zhao Y, Tian S J, Cao W Z, Li C H, Zhang M X, Zhu S H, Chen Y L, Lei H C and Qi Y P 2022 Phys. Rev. Mater. 6 L101801
[18] Gao L L, Wu J F, Xi M, Pei C Y, Wang Q, Zhao Y, Tian S J, Li C H, Cao W Z, Chen Y L, Lei H C and Qi Y P 2023 Appl. Phys. Lett. 122 172404
[19] Yan J Q, Huang Z L, Wu W D and May A F 2022 J. Alloys Compd. 906 164327
[20] Zhang Z C, Feng X, Guo M H, Li K, Zhang J S, Ou Y B, Feng Y, Wang L L, Chen X, He K, Ma X C, Xue Q K and Wang Y Y 2014 Nat. Commum. 5 4915
[21] Fisher M E 1962 Philos. Mag. 7 173
[22] Hu C W, Gao A Y, Berggren B S, Li H, Kurleto R, Narayan D, Zeljkovic I, Dessau D, Xu S Y and Ni N 2021 Phys. Rev. Mater. 5 124206
[23] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[24] Lee S H, Graf D, Min L J, Zhu Y L, Yi H M, Ciocys S, Wang Y X, Choi E S, Basnet R, Fereidouni A, Wegner A, Zhao Y F, Verlinde K, He J Y, Redwing R, Gopalan V, Churchill H O H, Lanzara A, Samarth N, Chang C Z, Hu J and Mao Z Q 2021 Phys. Rev. X 11 031032
[25] Lai Y, Ke L Q, Yan J Q, McDonald R D and McQueeney R J 2021 Phys. Rev. B 103 184429
[26] Islam F, Lee Y, Pajerowski D M, Oh J, Tian W, Zhou L, Yan J Q, Ke L Q, McQueeney R J and Vaknin D 2023 Adv. Mater. 35 2209951
[1] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[2] Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
Shiyue He(何诗悦), Ruoshui Liu(刘若水), Xujie Liu(刘煦婕), Xianping Ye(叶先平), Lichen Wang(王利晨), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(6): 066801.
[3] Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
Fengguo Fan(范凤国) and Lintong Duan(段林彤). Chin. Phys. B, 2024, 33(3): 037502.
[4] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[5] Optical study of magnetic topological insulator MnBi4Te7
Zhi-Yu Liao(廖知裕), Bing Shen(沈冰), Xiang-Gang Qiu(邱祥冈), and Bing Xu(许兵). Chin. Phys. B, 2024, 33(1): 017802.
[6] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[7] Analysis on the cation distribution of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) using Mössbauer spectroscopy and magnetic measurement
Shiyu Xu(徐诗语), Jiajun Mo(莫家俊), Lebin Liu(刘乐彬), and Min Liu(刘 敏). Chin. Phys. B, 2023, 32(12): 127507.
[8] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[9] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[10] Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2
Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥). Chin. Phys. B, 2022, 31(3): 037103.
[11] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[12] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[13] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[14] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[15] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
No Suggested Reading articles found!