CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Consistency between domain wall oscillation modes and spin wave modes in nanostrips |
Xinwei Dong(董新伟)† and Zhenjiang Wu(吴振江) |
Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China |
|
|
Abstract Investigations on domain wall (DW) and spin wave (SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs. Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of $\sim 140 $m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.
|
Received: 17 November 2023
Revised: 29 January 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
75.78.-n
|
(Magnetization dynamics)
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 20720210030) and the National Natural Science Foundation of China (Grant No. 11204255). |
Corresponding Authors:
Xinwei Dong
E-mail: dongxw@xmu.edu.cn
|
Cite this article:
Xinwei Dong(董新伟) and Zhenjiang Wu(吴振江) Consistency between domain wall oscillation modes and spin wave modes in nanostrips 2024 Chin. Phys. B 33 067502
|
[1] Allwood D, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688 [2] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190 [3] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406 [4] Ono T, Miyajima H, Shigeto K, Mibu K, Hosoito N and Shinjo T 1999 Science 284 468 [5] Beach G S D, Nistor C, Knutson C, Tsol M and Erskine J L 2005 Nat. Mater. 4 741 [6] Omari K, Bradley R C, Broomhall T J, Hodges M P P, Rosamond M C, Linfield E H, Im M Y, Fischer P and Hayward T J 2015 Appl. Phys. Lett. 107 222403 [7] Dong X W and Wang R F 2019 J. Magn. Magn. Mater. 473 26 [8] Vernier N, Allwood D A, Atkinson D, Cooke M D and Cowburn R P 2004 Europhys. Lett. 65 526 [9] Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K and Shinjo T 2004 Phys. Rev. Lett. 92 077205 [10] Beach G S D, Knutson C, Nistor C, Tsoi M and Erskine J L 2006 Phys. Rev. Lett. 97 057203 [11] Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy Y B and Parkin S S P 2007 Phys. Rev. Lett. 98 037204 [12] Franke K J A, Van de Wiele B, Shirahata Y, Ham al ainen S J, Taniyama T and Dijken S V V 2015 Phys. Rev. X 5 011010 [13] Han D S, Kim S K, Lee J Y, Hermsdoerfer S, Schiltheiss H, Leven B and Hillebrands B 2009 Appl. Phys. Lett. 94 112502 [14] Seo S M, Lee H W, Kohno H and Lee K J 2011 Appl. Phys. Lett. 98 012514 [15] Zhang S F, Mu C P, Zhu Q Y, Zheng Q, Liu X Y, Wang J B and Liu Q F 2014 J. Appl. Phys. 115 013908 [16] Gao Z-C, Su Y, Weng L, Hu J and Park C 2019 New J. Phys. 21 063014 [17] Yan P, Wang X S and Wang X R 2011 Phys. Rev. Lett. 107 177207 [18] Kim J S, Stark M, Kläui M, Yoon J, You C Y, Lopez-Diaz L and Martinez E 2012 Phys. Rev. B. 85 174428 [19] Wang X G, Guo G H, Zhang G F, Nie Y Z and Xia Q L 2013 J. Appl. Phys. 113 213904 [20] Covington M, Crawford T M and Parker G J 2002 Phys. Rev. Lett. 89 237202 [21] Vlaminck V and Bailleul M 2008 Science 322 410 [22] Choi S, Lee K S, Guslienko K Y and Kim S K 2007 Phys. Rev. Lett. 98 087205 [23] Woo S, Delaney T and Beach G S D 2017 Nat. Phys. 13 448 [24] Torrejon J, Malinowski G, Pelloux M, Weil R, Thiaville A, Curiale J, Lacour D, Montaigne F and Hehn M 2012 Phys. Rev. Lett. 109 106601 [25] Jiang W J, Upadhyaya P and Fan Y B, et al. 2013 Phys. Rev. Lett. 110 177202 [26] Wang X S and Wang X R 2014 Phys. Rev. B 90 014414 [27] Tetienne J P, Hingant T, Kim J V, Herrera Diez L, Adam J P, Garcia K, Roch J F, Rohart S and Thiaville A 2014 Science 344 1366 [28] Schlickeiser F, Ritzmann U, Hinzke D and Nowak U 2014 Phys. Rev. Lett. 113 097201 [29] Selzer S, Atxitia U, Ritzmann U, Hinzke D and Nowak U 2016 Phys. Rev. Lett. 117 107201 [30] Moretti S, Raposo V, Martinez E and Lopez-Diaz L 2017 Phys. Rev. B 95 064419 [31] Yan Z, Chen Z, Qin M, Lu X, Gao X and Liu J 2018 Phys. Rev. B 97 054308 [32] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A and Rasing T 2007 Phys. Rev. Lett. 99 047601 [33] Nemec P, Rozkotová E and Tesarová N, et al. 2012 Nat. Phys. 8 411 [34] Lambert C H, Mangin S and Varaprasad B S D C S, et al. 2014 Science 345 1337 [35] Ramsay A J, Roy P E, Haigh J A, Otxoa R M, Irvine A C, Janda T, Campion R P, Gallagher B L and Wunderlich J 2015 Phys. Rev. Lett. 114 067202 [36] Janda T, Roy P E and Otxoa R M, et al. 2017 Nat. Commun. 8 15226 [37] Yan P, Kamra A, Cao Y and Bauer G E W 2013 Phys. Rev. B 88 144413 [38] Yan P and Bauer G E W 2012 Phys. Rev. Lett. 109 087202 [39] Yan P, Cao Y and Sinova J 2015 Phys. Rev. B 92 100408 [40] Roy P E, Trypiniotis T and Barnes C H W 2010 Phys. Rev. B 82 134411 [41] Metaxas P J, Albert M, Lequeux S, Cros V, Grollier J, Bortolotti P, Anane A and Fangohr H 2016 Phys. Rev. B 93 054414 [42] Wang X G, Guo G H, Zhang G F, Nie Y Z, Xia Q L and Li Z X 2013 J. Magn. Magn. Mater. 332 56 [43] Lee K S, Han D S and Kim S K 2009 Phys. Rev. Lett. 102 127202 [44] Choi S, Lee K S, Guslienko K Y and Kim S K 2007 Phys. Rev. Lett. 98 087205 [45] Bao D, and Dong X W 2021 J. Magn. Magn. Mater. 539 168388 [46] Wagner K, Kákay A, Schultheiss K, Henschke A, Sebastian T and Schultheiss H 2016 Nat. Nanotechnol. 11 432 [47] Henry Y, Stoeffler D, Kim J V and Bailleul M 2019 Phys. Rev. B 100 024416 [48] Chang L J, Chen J L, Qu D R, Tsai L Z, Liu Y. F, Kao M Y, Liang J Z, Wu T S, Chuang T M, Yu H M and Lee S F 2020 Nano Lett. 20 3140 [49] Vansteenkiste1 A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|