Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067502    DOI: 10.1088/1674-1056/ad2a6b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Consistency between domain wall oscillation modes and spin wave modes in nanostrips

Xinwei Dong(董新伟)† and Zhenjiang Wu(吴振江)
Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China
Abstract  Investigations on domain wall (DW) and spin wave (SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs. Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of $\sim 140 $m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.
Keywords:  micromagnetic simulation      domain wall      spin wave  
Received:  17 November 2023      Revised:  29 January 2024      Accepted manuscript online:  19 February 2024
PACS:  75.78.-n (Magnetization dynamics)  
  75.60.Ch (Domain walls and domain structure)  
  75.78.Cd (Micromagnetic simulations ?)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 20720210030) and the National Natural Science Foundation of China (Grant No. 11204255).
Corresponding Authors:  Xinwei Dong     E-mail:  dongxw@xmu.edu.cn

Cite this article: 

Xinwei Dong(董新伟) and Zhenjiang Wu(吴振江) Consistency between domain wall oscillation modes and spin wave modes in nanostrips 2024 Chin. Phys. B 33 067502

[1] Allwood D, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688
[2] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[3] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406
[4] Ono T, Miyajima H, Shigeto K, Mibu K, Hosoito N and Shinjo T 1999 Science 284 468
[5] Beach G S D, Nistor C, Knutson C, Tsol M and Erskine J L 2005 Nat. Mater. 4 741
[6] Omari K, Bradley R C, Broomhall T J, Hodges M P P, Rosamond M C, Linfield E H, Im M Y, Fischer P and Hayward T J 2015 Appl. Phys. Lett. 107 222403
[7] Dong X W and Wang R F 2019 J. Magn. Magn. Mater. 473 26
[8] Vernier N, Allwood D A, Atkinson D, Cooke M D and Cowburn R P 2004 Europhys. Lett. 65 526
[9] Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K and Shinjo T 2004 Phys. Rev. Lett. 92 077205
[10] Beach G S D, Knutson C, Nistor C, Tsoi M and Erskine J L 2006 Phys. Rev. Lett. 97 057203
[11] Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy Y B and Parkin S S P 2007 Phys. Rev. Lett. 98 037204
[12] Franke K J A, Van de Wiele B, Shirahata Y, Ham al ainen S J, Taniyama T and Dijken S V V 2015 Phys. Rev. X 5 011010
[13] Han D S, Kim S K, Lee J Y, Hermsdoerfer S, Schiltheiss H, Leven B and Hillebrands B 2009 Appl. Phys. Lett. 94 112502
[14] Seo S M, Lee H W, Kohno H and Lee K J 2011 Appl. Phys. Lett. 98 012514
[15] Zhang S F, Mu C P, Zhu Q Y, Zheng Q, Liu X Y, Wang J B and Liu Q F 2014 J. Appl. Phys. 115 013908
[16] Gao Z-C, Su Y, Weng L, Hu J and Park C 2019 New J. Phys. 21 063014
[17] Yan P, Wang X S and Wang X R 2011 Phys. Rev. Lett. 107 177207
[18] Kim J S, Stark M, Kläui M, Yoon J, You C Y, Lopez-Diaz L and Martinez E 2012 Phys. Rev. B. 85 174428
[19] Wang X G, Guo G H, Zhang G F, Nie Y Z and Xia Q L 2013 J. Appl. Phys. 113 213904
[20] Covington M, Crawford T M and Parker G J 2002 Phys. Rev. Lett. 89 237202
[21] Vlaminck V and Bailleul M 2008 Science 322 410
[22] Choi S, Lee K S, Guslienko K Y and Kim S K 2007 Phys. Rev. Lett. 98 087205
[23] Woo S, Delaney T and Beach G S D 2017 Nat. Phys. 13 448
[24] Torrejon J, Malinowski G, Pelloux M, Weil R, Thiaville A, Curiale J, Lacour D, Montaigne F and Hehn M 2012 Phys. Rev. Lett. 109 106601
[25] Jiang W J, Upadhyaya P and Fan Y B, et al. 2013 Phys. Rev. Lett. 110 177202
[26] Wang X S and Wang X R 2014 Phys. Rev. B 90 014414
[27] Tetienne J P, Hingant T, Kim J V, Herrera Diez L, Adam J P, Garcia K, Roch J F, Rohart S and Thiaville A 2014 Science 344 1366
[28] Schlickeiser F, Ritzmann U, Hinzke D and Nowak U 2014 Phys. Rev. Lett. 113 097201
[29] Selzer S, Atxitia U, Ritzmann U, Hinzke D and Nowak U 2016 Phys. Rev. Lett. 117 107201
[30] Moretti S, Raposo V, Martinez E and Lopez-Diaz L 2017 Phys. Rev. B 95 064419
[31] Yan Z, Chen Z, Qin M, Lu X, Gao X and Liu J 2018 Phys. Rev. B 97 054308
[32] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A and Rasing T 2007 Phys. Rev. Lett. 99 047601
[33] Nemec P, Rozkotová E and Tesarová N, et al. 2012 Nat. Phys. 8 411
[34] Lambert C H, Mangin S and Varaprasad B S D C S, et al. 2014 Science 345 1337
[35] Ramsay A J, Roy P E, Haigh J A, Otxoa R M, Irvine A C, Janda T, Campion R P, Gallagher B L and Wunderlich J 2015 Phys. Rev. Lett. 114 067202
[36] Janda T, Roy P E and Otxoa R M, et al. 2017 Nat. Commun. 8 15226
[37] Yan P, Kamra A, Cao Y and Bauer G E W 2013 Phys. Rev. B 88 144413
[38] Yan P and Bauer G E W 2012 Phys. Rev. Lett. 109 087202
[39] Yan P, Cao Y and Sinova J 2015 Phys. Rev. B 92 100408
[40] Roy P E, Trypiniotis T and Barnes C H W 2010 Phys. Rev. B 82 134411
[41] Metaxas P J, Albert M, Lequeux S, Cros V, Grollier J, Bortolotti P, Anane A and Fangohr H 2016 Phys. Rev. B 93 054414
[42] Wang X G, Guo G H, Zhang G F, Nie Y Z, Xia Q L and Li Z X 2013 J. Magn. Magn. Mater. 332 56
[43] Lee K S, Han D S and Kim S K 2009 Phys. Rev. Lett. 102 127202
[44] Choi S, Lee K S, Guslienko K Y and Kim S K 2007 Phys. Rev. Lett. 98 087205
[45] Bao D, and Dong X W 2021 J. Magn. Magn. Mater. 539 168388
[46] Wagner K, Kákay A, Schultheiss K, Henschke A, Sebastian T and Schultheiss H 2016 Nat. Nanotechnol. 11 432
[47] Henry Y, Stoeffler D, Kim J V and Bailleul M 2019 Phys. Rev. B 100 024416
[48] Chang L J, Chen J L, Qu D R, Tsai L Z, Liu Y. F, Kao M Y, Liang J Z, Wu T S, Chuang T M, Yu H M and Lee S F 2020 Nano Lett. 20 3140
[49] Vansteenkiste1 A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133
[1] Mapping the antiparallel aligned domain rotation by microwave excitation
Jing Zhang(张景), Yuanzhi Cui(崔远志), Xiaoyu Wang(王晓雨), Chuang Wang(王创), Mengchen Liu(刘梦晨), Jie Xu(徐洁), Kai Li(李凯), Yunhe Zhao(赵芸鹤), Zhenyan Lu(陆振烟), Lining Pan(潘丽宁), Chendong Jin(金晨东), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Derang Cao(曹德让). Chin. Phys. B, 2024, 33(9): 097506.
[2] Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction
Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏). Chin. Phys. B, 2024, 33(9): 097601.
[3] Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel
Jie-Yao Chen(陈杰尧), Jia Luo(罗佳), Geng-Xin Hu(胡更新), Jun-Lin Wang(王君林), Guan-Qi Li(李冠祺), Zhen-Dong Chen(陈振东), Xian-Yang Lu(陆显扬), Guo-Ping Zhao(赵国平), Yuan Liu(刘远), Jing Wu(吴竞), and Yong-Bing Xu(徐永兵). Chin. Phys. B, 2024, 33(7): 077505.
[4] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[5] Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals
Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超), Henan Fang(方贺男), Lin Chen(陈琳), and Zhi-Kuo Tao(陶志阔). Chin. Phys. B, 2024, 33(1): 017501.
[6] Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2
Yan Li(李彦), Yao Xiao(肖遥), Qi Zheng(郑琦), Xiao Lin(林晓), Li Huang(黄立), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(7): 077101.
[7] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[8] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[9] Ferroelectric domain wall memory
Yiming Li(李一鸣), Jie Sun(孙杰), and Anquan Jiang(江安全). Chin. Phys. B, 2023, 32(12): 128504.
[10] Multi-segmented nanowires for vortex magnetic domain wall racetrack memory
M Al Bahri, M Al Hinaai, and T Al Harthy. Chin. Phys. B, 2023, 32(12): 127508.
[11] In-plane spin excitation of skyrmion bags
Shuang Li(李爽), Ke-Xin Li(李可欣), Zhao-Hua Liu(刘照华), Qi-Yuan Zhu(朱起源), Chen-Bo Zhao(赵晨博), Hu Zhang(张虎), Xing-Qiang Shi(石兴强), Jiang-Long Wang(王江龙), Rui-Ning Wang(王瑞宁), Ru-Qian Lian(连如乾), Peng-Lai Gong(巩朋来), and Chen-Dong Jin(金晨东). Chin. Phys. B, 2023, 32(11): 117503.
[12] Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd-Fe-B sintered magnets
Zhiteng Li(李之藤), Haibo Xu(徐海波), Feng Liu(刘峰), Rongshun Lai(赖荣舜), Renjie Wu(武仁杰), Zhibin Li(李志彬), Yangyang Zhang(张洋洋), and Qiang Ma(马强). Chin. Phys. B, 2023, 32(10): 107503.
[13] Eigenstates and temporal dynamics in cavity optomagnonics
Yun-Jing Ding(丁云静) and Yang Xiao(肖杨). Chin. Phys. B, 2023, 32(10): 107601.
[14] Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality
Xue-Feng Zhang(张雪枫), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2023, 32(10): 107501.
[15] Nonlinear three-magnon scattering in low-damping La0.67Sr0.33MnO3 thin films
Yuelin Zhang(张跃林), Lutong Sheng(盛路通), Jilei Chen(陈济雷), Jie Wang(王婕), Zengtai Zhu(朱增泰), Rundong Yuan(袁润东), Jingdi Lu(鲁京迪), Hanchen Wang(王涵晨), Sijie Hao(郝思洁), Peng Chen(陈鹏), Guoqiang Yu(于国强), Xiufeng Han(韩秀峰), and Haiming Yu(于海明). Chin. Phys. B, 2023, 32(10): 107505.
No Suggested Reading articles found!