Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050303    DOI: 10.1088/1674-1056/ad2a6e
GENERAL Prev   Next  

Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis

Y. Lahlou1,†, B. Maroufi2, and M. Daoud2
1 LPHE-MS, Department of Physics, Faculty of Sciences, Mohammed V University, Rabat, Morocco;
2 LPMS, Department of Physics, Faculty of Sciences, Ibn Tofail University, Kénitra, Morocco
Abstract  Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation. Essentially, for quantum systems prepared in pure states, it is difficult to differentiate between quantum entanglement and quantum correlation. Nonetheless, this indistinguishability is no longer holds for mixed states. To contribute to a better understanding of this differentiation, we have explored a simple model for both generating and measuring these quantum correlations. Our study concerns two macroscopic mechanical resonators placed in separate Fabry-Pérot cavities, coupled through the photon hopping process. this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes. The key ingredient in analyzing quantum correlation in this system is the global covariance matrix. It forms the basis for computing two essential metrics: the logarithmic negativity ($E_\mathcal{N}^{\rm m}$) and the Gaussian interferometric power ($\mathcal{P}_{\mathcal{G}}^{m}$). These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations, respectively. Our study reveals that the Gaussian interferometric power ($\mathcal{P}_{\mathcal{G}}^{m}$) proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system, particularly in scenarios featuring resilient photon hopping.
Keywords:  quantum correlations      entanglement      Gaussian interferometric power      logarithmic negativity      optomechanics      photon hopping  
Received:  01 December 2023      Revised:  23 January 2024      Accepted manuscript online:  19 February 2024
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
Corresponding Authors:  Y. Lahlou     E-mail:  youness_lahlou@um5.ac.ma

Cite this article: 

Y. Lahlou, B. Maroufi, and M. Daoud Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis 2024 Chin. Phys. B 33 050303

[1] Adesso G, Bromley T R and Cianciaruso M 2016 J. Phys. A: Math. Theor. 49 473001
[2] Maziero J, Celeri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[3] Bitbol M 1996 Schrödinger’s philosophy of quantum mechanics 188 (Berlin: Springer)
[4] Adesso G 2007 arXiv:quant-ph/0702069
[5] Jones J A and Jaksch D 2012 Quantum information, computation and communication (Cambridge: Cambridge University Press)
[6] Paris M G 2009 Int. J. Quantum Inform. 7 125
[7] Steane A M 1999 Nature 399 124
[8] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L 2010 nature 464 45
[9] Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Phys. Rev. Lett. 75 3788
[10] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[11] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R and Wallden P 2020 Adv. Opt. Photon. 12 1012
[12] Bennett C H, Brassard G and Ekert A K 1992 Sci. Amer. 267 50
[13] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[14] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[15] Lahlou Y, Bakmou L, Maroufi B and Daoud M 2022 Quantum. Inf. Process. 21 248
[16] Kheirabady M S and Tavassoly M K 2023 J. Phys. B: At. Mol. Opt. Phys. 56 035501
[17] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555
[18] Wu E et al. 2020 Laser Phys. 30 065205
[19] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[20] Rafeie M, Tavassoly M K and Setodeh Kheirabady M 2022 Ann. Phys. 534 2100455
[21] Sete E A, Svidzinsky A A, Eleuch H, Yang Z, Nevels R D and Scully M O 2010 J. Mod. Opt. 57 1311
[22] Eleuch H 2010 Int. J. Mod. Phys. B 24 5653
[23] Teufel J D, Donner T, Castellanos-Beltran M A, Harlow J W and Lehnert K W 2009 Nat. Nanotechnol. 4 820
[24] Bruß D 2002 J. Math. Phys. 43 4237
[25] Erhard M, Krenn M and Zeilinger A 2020 Nat. Rev. Phys. 2 365
[26] Zyczkowski K, Horodecki P, Horodecki M and Horodecki R 2001 Phys. Rev. A 65 012101
[27] Bennett C H, Brassard G, Cr’epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. lett. 70 1895
[28] Danilishin S L and Khalili F Y 2012 Living Rev. Relativ. 15 5
[29] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[30] Jost J D, Home J P, Amini J M, Hanneke D, Ozeri R, Langer C and Wineland D J 2009 Nature 459 683
[31] Armour A D, Blencowe M P and Schwab K C 2002 Phys. Rev. Lett. 88 148301
[32] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[33] Rafeie M and Tavassoly M K 2023 Eur. Phys. J. D 77 63
[34] Chen R X, Shen L T, Yang Z B, Wu H Z and Zheng S B 2014 Phys. Rev. A 89 023843
[35] Vitali D, Gigan S, Ferreira A, BSchrödingerhm H R, Tombesi P, Guerreiro A and Aspelmeyer M 2007 Phys. Rev. Lett. 9 030405
[36] Liao C G, Xie H, Chen R X, Ye M Y and Lin X M 2020 Phys. Rev. A 101 032120
[37] Blatt R and Wineland D 2008 Nature 453 1008
[38] Joshi C, Larson J, Jonson M, Andersson E and Öhberg P 2012 Phys. Rev. A 85 033805
[39] Chen R X, Liao C G and Lin X M 2017 Sci. Rep. 7 14497
[40] Tian L 2013 Phys. Rev. Lett. 110 233602
[41] Sete E A, Eleuch H and Ooi C R 2014 J. Opt. Soc. Am. B 31 2821
[42] Lahlou Y, Maroufi B and Daoud M 2023 Mod. Phys. Lett. A 2350154
[43] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
[44] Lahlou Y, Amazioug M, El Qars J, Habiballah N, Daoud M and Nassik M 2019 Int. J. Mod. Phys. B 33 1950343
[45] Ludwig M, Safavi-Naeini A H, Painter O and Marquardt F 2012 Phys. Rev. Lett. 109 063601
[46] Rastegarzadeh M, Tavassoly M K and Hassani Nadiki M 2023 Quantum Inf. Process. 22 95
[47] Eftekhari F, Tavassoly M K and Behjat A 2022 Physica A 596 127176
[48] Braginsky V B and Khalili F Y 1995 Quantum measurement (Cambridge: Cambridge University Press)
[49] Huang S and Agarwal G S 2009 New J. Phys. 11 103044
[50] Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812
[51] Sete E A, Eleuch H and Das S 2011 Phys. Rev. A 84 053817
[52] Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824
[53] Mazzola L and Paternostro M 2011 Phys. Rev. A 83 062335
[54] Lahlou Y, Maroufi B, El Qars J and Daoud M 2020 J. Russ. Laser Res. 41 584
[55] Adesso G, Ragy S and Lee A R 2014 Open Syst. Inf. Dyn. 21 1440001
[56] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513
[57] Mari A and Eisert J 2009 Phys. Rev. Lett. 103 213603
[58] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[59] Den Dekker A J and Van den Bos A 1997 J. Opt. Soc. Am. A 14 547
[60] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[61] Plenio M B 2005 Phys. Rev. Lett. 95 090503
[62] Adesso G 2014 Phys. Rev. A 90 022321
[63] Souza L A, Dhar H S, Bera M N, Liuzzo-Scorpo P and Adesso G 2015 Phys. Rev. A 92 052122
[64] Gröblacher S, Hertzberg J B, Vanner M R, Cole G D, Gigan S, Schwab K C and Aspelmeyer M 2009 Nat. Phys. 5 485
[65] Fainstein A, Lanzillotti-Kimura N D, Jusserand B and Perrin B 2013 Phys. Rev. Lett. 110 037403
[66] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[1] A quantum blind signature scheme based on dense coding for non-entangled states
Ke Xing(邢柯), Ai-Han Yin(殷爱菡),and Yong-Qi Xue(薛勇奇). Chin. Phys. B, 2024, 33(6): 060309.
[2] Nonlinearly induced entanglement in dissipatively coupled optomechanical system
Wen-Quan Yang(杨文全), Xuan Leng(冷轩), Jiong Cheng(程泂), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2024, 33(6): 060313.
[3] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[4] One-step quantum dialogue
Peng-Hui Zhu(朱鹏辉), Wei Zhong(钟伟), Ming-Ming Du(杜明明), Xi-Yun Li(李喜云), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2024, 33(3): 030302.
[5] Quantum synchronization with correlated baths
Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2024, 33(2): 020306.
[6] Genuine entanglement under squeezed generalized amplitude damping channels with memory
Mazhar Ali. Chin. Phys. B, 2024, 33(2): 020307.
[7] Preparing highly entangled states of nanodiamond rotation and NV center spin
Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆). Chin. Phys. B, 2024, 33(2): 020305.
[8] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[9] Algorithm for evaluating distance-based entanglement measures
Yixuan Hu(胡奕轩), Ye-Chao Liu(刘烨超), and Jiangwei Shang(尚江伟). Chin. Phys. B, 2023, 32(8): 080307.
[10] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[11] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[12] Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志). Chin. Phys. B, 2023, 32(6): 060301.
[13] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[14] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[15] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
No Suggested Reading articles found!