|
|
Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis |
Y. Lahlou1,†, B. Maroufi2, and M. Daoud2 |
1 LPHE-MS, Department of Physics, Faculty of Sciences, Mohammed V University, Rabat, Morocco; 2 LPMS, Department of Physics, Faculty of Sciences, Ibn Tofail University, Kénitra, Morocco |
|
|
Abstract Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation. Essentially, for quantum systems prepared in pure states, it is difficult to differentiate between quantum entanglement and quantum correlation. Nonetheless, this indistinguishability is no longer holds for mixed states. To contribute to a better understanding of this differentiation, we have explored a simple model for both generating and measuring these quantum correlations. Our study concerns two macroscopic mechanical resonators placed in separate Fabry-Pérot cavities, coupled through the photon hopping process. this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes. The key ingredient in analyzing quantum correlation in this system is the global covariance matrix. It forms the basis for computing two essential metrics: the logarithmic negativity ($E_\mathcal{N}^{\rm m}$) and the Gaussian interferometric power ($\mathcal{P}_{\mathcal{G}}^{m}$). These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations, respectively. Our study reveals that the Gaussian interferometric power ($\mathcal{P}_{\mathcal{G}}^{m}$) proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system, particularly in scenarios featuring resilient photon hopping.
|
Received: 01 December 2023
Revised: 23 January 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
42.50.-p
|
(Quantum optics)
|
|
Corresponding Authors:
Y. Lahlou
E-mail: youness_lahlou@um5.ac.ma
|
Cite this article:
Y. Lahlou, B. Maroufi, and M. Daoud Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis 2024 Chin. Phys. B 33 050303
|
[1] Adesso G, Bromley T R and Cianciaruso M 2016 J. Phys. A: Math. Theor. 49 473001 [2] Maziero J, Celeri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102 [3] Bitbol M 1996 Schrödinger’s philosophy of quantum mechanics 188 (Berlin: Springer) [4] Adesso G 2007 arXiv:quant-ph/0702069 [5] Jones J A and Jaksch D 2012 Quantum information, computation and communication (Cambridge: Cambridge University Press) [6] Paris M G 2009 Int. J. Quantum Inform. 7 125 [7] Steane A M 1999 Nature 399 124 [8] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L 2010 nature 464 45 [9] Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Phys. Rev. Lett. 75 3788 [10] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 [11] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R and Wallden P 2020 Adv. Opt. Photon. 12 1012 [12] Bennett C H, Brassard G and Ekert A K 1992 Sci. Amer. 267 50 [13] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222 [14] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401 [15] Lahlou Y, Bakmou L, Maroufi B and Daoud M 2022 Quantum. Inf. Process. 21 248 [16] Kheirabady M S and Tavassoly M K 2023 J. Phys. B: At. Mol. Opt. Phys. 56 035501 [17] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555 [18] Wu E et al. 2020 Laser Phys. 30 065205 [19] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [20] Rafeie M, Tavassoly M K and Setodeh Kheirabady M 2022 Ann. Phys. 534 2100455 [21] Sete E A, Svidzinsky A A, Eleuch H, Yang Z, Nevels R D and Scully M O 2010 J. Mod. Opt. 57 1311 [22] Eleuch H 2010 Int. J. Mod. Phys. B 24 5653 [23] Teufel J D, Donner T, Castellanos-Beltran M A, Harlow J W and Lehnert K W 2009 Nat. Nanotechnol. 4 820 [24] Bruß D 2002 J. Math. Phys. 43 4237 [25] Erhard M, Krenn M and Zeilinger A 2020 Nat. Rev. Phys. 2 365 [26] Zyczkowski K, Horodecki P, Horodecki M and Horodecki R 2001 Phys. Rev. A 65 012101 [27] Bennett C H, Brassard G, Cr’epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. lett. 70 1895 [28] Danilishin S L and Khalili F Y 2012 Living Rev. Relativ. 15 5 [29] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401 [30] Jost J D, Home J P, Amini J M, Hanneke D, Ozeri R, Langer C and Wineland D J 2009 Nature 459 683 [31] Armour A D, Blencowe M P and Schwab K C 2002 Phys. Rev. Lett. 88 148301 [32] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [33] Rafeie M and Tavassoly M K 2023 Eur. Phys. J. D 77 63 [34] Chen R X, Shen L T, Yang Z B, Wu H Z and Zheng S B 2014 Phys. Rev. A 89 023843 [35] Vitali D, Gigan S, Ferreira A, BSchrödingerhm H R, Tombesi P, Guerreiro A and Aspelmeyer M 2007 Phys. Rev. Lett. 9 030405 [36] Liao C G, Xie H, Chen R X, Ye M Y and Lin X M 2020 Phys. Rev. A 101 032120 [37] Blatt R and Wineland D 2008 Nature 453 1008 [38] Joshi C, Larson J, Jonson M, Andersson E and Öhberg P 2012 Phys. Rev. A 85 033805 [39] Chen R X, Liao C G and Lin X M 2017 Sci. Rep. 7 14497 [40] Tian L 2013 Phys. Rev. Lett. 110 233602 [41] Sete E A, Eleuch H and Ooi C R 2014 J. Opt. Soc. Am. B 31 2821 [42] Lahlou Y, Maroufi B and Daoud M 2023 Mod. Phys. Lett. A 2350154 [43] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302 [44] Lahlou Y, Amazioug M, El Qars J, Habiballah N, Daoud M and Nassik M 2019 Int. J. Mod. Phys. B 33 1950343 [45] Ludwig M, Safavi-Naeini A H, Painter O and Marquardt F 2012 Phys. Rev. Lett. 109 063601 [46] Rastegarzadeh M, Tavassoly M K and Hassani Nadiki M 2023 Quantum Inf. Process. 22 95 [47] Eftekhari F, Tavassoly M K and Behjat A 2022 Physica A 596 127176 [48] Braginsky V B and Khalili F Y 1995 Quantum measurement (Cambridge: Cambridge University Press) [49] Huang S and Agarwal G S 2009 New J. Phys. 11 103044 [50] Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812 [51] Sete E A, Eleuch H and Das S 2011 Phys. Rev. A 84 053817 [52] Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824 [53] Mazzola L and Paternostro M 2011 Phys. Rev. A 83 062335 [54] Lahlou Y, Maroufi B, El Qars J and Daoud M 2020 J. Russ. Laser Res. 41 584 [55] Adesso G, Ragy S and Lee A R 2014 Open Syst. Inf. Dyn. 21 1440001 [56] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513 [57] Mari A and Eisert J 2009 Phys. Rev. Lett. 103 213603 [58] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318 [59] Den Dekker A J and Van den Bos A 1997 J. Opt. Soc. Am. A 14 547 [60] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 [61] Plenio M B 2005 Phys. Rev. Lett. 95 090503 [62] Adesso G 2014 Phys. Rev. A 90 022321 [63] Souza L A, Dhar H S, Bera M N, Liuzzo-Scorpo P and Adesso G 2015 Phys. Rev. A 92 052122 [64] Gröblacher S, Hertzberg J B, Vanner M R, Cole G D, Gigan S, Schwab K C and Aspelmeyer M 2009 Nat. Phys. 5 485 [65] Fainstein A, Lanzillotti-Kimura N D, Jusserand B and Perrin B 2013 Phys. Rev. Lett. 110 037403 [66] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|