|
|
Genuine entanglement under squeezed generalized amplitude damping channels with memory |
Mazhar Ali† |
Department of Electrical Engineering, Faculty of Engineering, Islamic University Madinah, Madinah 107, Saudi Arabia |
|
|
Abstract We study genuine entanglement among three qubits undergoing a noisy process that includes dissipation, squeezing, and decoherence. We obtain a general solution and analyze the asymptotic quantum states. We find that most of these asymptotic states can be genuinely entangled depending upon the parameters of the channel, memory parameter, and the parameters of the initial states. We study Greenberger-Horne-Zeilinger (GHZ) states and ${W}$ states, mixed with white noise, and determine the conditions for them to be genuinely entangled at infinity. We find that for these mixtures, it is possible to start with a bi-separable state (with a specific mixture of white noise) and end with genuine entangled states. However, the memory parameter $\mu$ must be very high. We find that in contrast to the two-qubit case, none of the three-qubit asymptotic states for $n \to \infty$ are genuinely entangled.
|
Received: 03 May 2023
Revised: 14 June 2023
Accepted manuscript online: 25 June 2023
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Corresponding Authors:
Mazhar Ali
E-mail: mazharaliawan@yahoo.com
|
Cite this article:
Mazhar Ali Genuine entanglement under squeezed generalized amplitude damping channels with memory 2024 Chin. Phys. B 33 020307
|
[1] Wilde M M 2017 Quantum Information Theory (Cambridge: Cambridge Univ. Press) [2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [3] Gühne O and Tóth G 2009 Phys. Rep. 474 1 [4] Erhard M, Krenn M and Zeilinger A 2020 Nat. Rev. Phys. 2 365 [5] Friis N, Vitagliano G, Malik M and Huber M 2019 Nat. Rev. Phys. 1 72 [6] Ali M 2023 Quant. Infor. Process 22 207 [7] Yu T and Eberly J H 2002 Phys. Rev. B 66 193306 [8] Yu T and Eberly J H 2003 Phys. Rev. B 68 165322 [9] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404 [10] Eberly J H and Yu T 2007 Science 316 555 [11] Dür W and Briegel H J 2004 Phys. Rev. Lett. 92 180403 [12] Hein M, Dür W and Briegel H J 2005 Phys. Rev. A 71 032350 [13] Aolita L, Chaves R, Cavalcanti D, Acín A and Davidovich L 2008 Phys. Rev. Lett. 100 080501 [14] Simon C and Kempe J 2002 Phys. Rev. A 65 052327 [15] Borras A, Majtey P, Plastino A R, Casas M and Plastino A 2009 Phys. Rev. A 79 022108 [16] Cavalcanti D, Chaves R, Aolita L, Davidovich L and Acín A 2009 Phys. Rev. Lett. 103 030502 [17] Bandyopadhyay S and Lidar D A 2005 Phys. Rev. A 72 042339 [18] Chaves R and Davidovich L 2010 Phys. Rev. A 82 052308 [19] Aolita L, Cavalcanti D, Chaves R, Dhara C, Davidovich L and Acín A 2010 Phys. Rev. A 82 032317 [20] Carvalho A R R, Mintert F and Buchleitner A 2004 Phys. Rev. Lett. 93 230501 [21] Lastra F, Romero G, Lopez C E, França Santos M and Retamal J C 2007 Phys. Rev A 75 062324 [22] Gühne O, Bodoky F and Blaauboer M 2008 Phys. Rev. A 78 060301 [23] López C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503 [24] Rau A R P, Ali M and Alber G 2008 Europhys. Lett. 82 40002 [25] Ali M, Alber G and Rau A R P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 025501 [26] Ali M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045504 [27] Ali M 2010 Phys. Rev. A 81 042303 [28] Ali M and Gühne O 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055503 [29] Weinstein Y S, Feldman J, Robins J, Zukus J and Gilbert G 2012 Phys. Rev. A 85 032324 [30] Filippov S N, Melnikov A A and Ziman M 2013 Phys. Rev. A 88 062328 [31] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge Univ. Press) [32] Fujiwara A 2004 Phys. Rev. A 70 012317 [33] Srikanth R and Banerjee S 2008 Phys. Rev. A 77 012318 [34] Banerjee S and Ghosh R 2007 J. Phys. A: Math. Theor. 40 13735 [35] Banaszek K, Dragan A, Wasilewski W and Radzewics C 2004 Phys. Rev. Lett. 92 257901 [36] Plenio M B and Virmani S 2007 Phys. Rev. Lett. 99 120504 [37] Daems D 2007 Phys. Rev. A 76 012310 [38] D'Arrigo A, Benenti G, Falci G and Macchiavello C 2013 Phys. Rev. A 88 042337 [39] Caruso F, Giovannetti V, Lupo C and Mancini S 2014 Rev. Mod. Phys. 86 1203 [40] Guo Y N, Fang M F, Wang G Y and Zeng K 2016 Quant. Infor. Process. 15 5129 [41] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [42] Jeong Y and Shin H 2019 Scientific Reports 9 4035 [43] Kim M S and Imoto N 1995 Phys. Rev. A 52 2401 [44] Poyatos J F, Cirac J I and Zoller P 1996 Phys. Rev. Lett. 77 4728 [45] Lütkenhaus N, Cirac J I and Zoller P 1998 Phys. Rev. A 57 548 [46] Myatt C J, King B E, Turchette Q A, Sackett C A, Kielpinski D, Itano W M, Monroe C and Wineland D J 2000 Nature 403 269 [47] Turchette Q A, Myatt C J, King B E, Sackett C A, Kielpinski D, Itano W M, Monroe C and Wineland D J 2000 Phys. Rev. A 62 053807 [48] Wilson D, Lee J and Kim M S 2003 J. Mod. Opt. 50 1809 [49] Banerjee S, Ravishankar V and Srikanth R 2010 Ann. Phys. 325 816 [50] Orszag M 2016 Quantum Optics (Springer) [51] Scully M O and Zubairy M S 2001 Quantum Optics (Oxford University Press) [52] We figured out that Kraus operators provided in Ref. [42] have typos and also their number is 6. We provide here only 4 operators satisfying the standard restrictions on them. [53] Jungnitsch B, Moroder T and Gühne O 2011 Phys. Rev. Lett. 106 190502 [54] Novo L, Moroder T and Gühne O 2013 Phys. Rev. A 88 012305 [55] Hofmann M, Moroder T and Gühne O 2014 J. Phys. A: Math. Theor. 47 155301 [56] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 [57] Jungnitsch B, Moroder T and Gühne O 2011 Phys. Rev. A 84 032310 [58] Rau A R P 2009 J. Phys. A: Math. Theor 42 412002 [59] Gühne O and Seevinck M 2010 New. J. Phys. 12 053002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|