Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 064201    DOI: 10.1088/1674-1056/ad2bf4
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Robust autofocusing propagation in turbulence

Na-Na Liu(刘娜娜)1, Liu Tan(谭柳)1, Kai-Jian Chen(陈凯健)1, Pei-Long Hong(洪佩龙)2, Xiao-Ming Mo(莫小明)1, Bing-Suo Zou(邹炳锁)1, Yu-Xuan Ren(任煜轩)3, and Yi Liang(梁毅)1,†
1 Guangxi Key Laboratory for Relativistic Astrophysics, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China;
2 School of Mathematics and Physics, Anqing Normal University, Anqing 246133, China;
3 Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
Abstract  Turbulence in complex environments such as the atmosphere and biological media has always been a great challenge to the application of beam propagation in optical communication, optical trapping and manipulation. To overcome this challenge, this study comprehensively investigates the robust propagation of traditional Gaussian and autofocusing beams in turbulent environments. In order to select stable beams that exhibit high intensity and high field gradient at the focal position in complex environments, Kolmogorov turbulence theory is used to simulate the propagation of beams in atmospheric turbulence based on the multi-phase screen method. We systematically analyze the intensity fluctuations, the variation of the coherence factor and the change in the scintillation index with propagation distance. The analysis reveals that the intensity fluctuations of autofocusing beams are significantly smaller than those of Gaussian beams, and the coherence of autofocusing beams is better than that of Gaussian beams under turbulence. Moreover, autofocusing beams exhibit less oscillation than Gaussian beams, indicating that autofocusing beams propagate in complex environments with less distortion and intensity fluctuation. Overall, this work clearly demonstrates that autofocusing beams exhibit higher stability in propagation compared with Gaussian beams, showing great promise for applications such as optical trapping and manipulation in complex environments.
Keywords:  propagation      beams      autofocusing      turbulence  
Received:  22 December 2023      Revised:  05 February 2024      Accepted manuscript online:  22 February 2024
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Dd (Wave propagation in random media)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.25.Fx (Diffraction and scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604058), Guangxi Natural Science Foundation (Grant Nos. 2020GXNSFAA297041 and 2023JJA110112), Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023083), and Sichuan Science and Technology Program (Grant No. 2023NSFSC0460).
Corresponding Authors:  Yi Liang     E-mail:  liangyi@gxu.edu.cn

Cite this article: 

Na-Na Liu(刘娜娜), Liu Tan(谭柳), Kai-Jian Chen(陈凯健), Pei-Long Hong(洪佩龙), Xiao-Ming Mo(莫小明), Bing-Suo Zou(邹炳锁), Yu-Xuan Ren(任煜轩), and Yi Liang(梁毅) Robust autofocusing propagation in turbulence 2024 Chin. Phys. B 33 064201

[1] Klug A, Peters C and Forbes A 2023 Adv. Photon. 5 016006
[2] Cox M, Mphuthi N, Nape I, Mashaba N, Cheng L and Forbes A 2021 IEEE J. Sel. Top. Quantum Electron. 27 7500521
[3] Bunea A and Gluckstad J 2019 Laser & Photon. Rev. 13 1800227
[4] Ricklin J C and Davidson F M 2002 J. Opt. Soc. Am. A 19 1794
[5] Yang Y J, Ren Y X, Chen M Z, Arita Y and Rosales-Guzmán C 2021 Adv. Photon. 3 034001
[6] Wang Q Y, Fink M and Ma G C 2023 Phys. Rev. Appl. 19 034084
[7] Liu K G, Zhang H K, Du S S, Liu Z Q, Zhang B, Fu X and Liu Q 2022 Photon. Res. 10 2293
[8] Hong P L, Ojambati O S, Lagendijk A, Mosk A P and Vos W L 2018 Optica 5 844
[9] Cao H, Mosk A P and Rotter S 2022 Nat. Phys. 18 994
[10] Bertolotti J and Katz O 2022 Nat. Phys. 18 1008
[11] Efremidis N K and Christodoulides D N 2010 Opt. Lett. 35 4045
[12] Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N and Chen Z G 2011 Opt. Lett. 36 2883
[13] Otte E and Denz C 2020 Appl. Phys. Rev. 7 041308
[14] Liang Y, Tan L, Liu N N, Chen K J, Liang H P, Wu H H, Luo B S, Lu F X, Chen H H, Zou B S and Hong P L 2023 Phys. Rev. Appl. 19 014016
[15] Efremidis N K, Chen Z G, Segev M and Christodoulides D N 2019 Optica 6 686
[16] Lu F X, Wu H, Liang Y, Tan L, Tan Z F, Feng X, Hu Y, Xiang Y X, Hu X B, Chen Z G and Xu J J 2021 Phys. Rev. A 104 043524
[17] Moradi H, Jabbarpour M, Abdollahpour D and Hajizadeh F 2022 Opt. Lett. 47 4115
[18] Lu F X, Tan L, Tan Z F, Wu H H and Liang Y 2021 Phys. Rev. A 104 023526
[19] Broky J, Siviloglou G A, Dogariu A and Christodoulides D N 2008 Opt. Express 16 12880
[20] Liang Y, Hu Y, Song D H, Lou C B, Zhang X Z, Chen Z G and Xu J J 2015 Opt. Lett. 40 5686
[21] Ren Y X, Lamstein J, Zhang C S, Conti C, Christodoulides D N and Chen Z G 2023 Photon. Res. 11 1838
[22] Chen X Y, Deng D M, Zhuang J L, Peng X, Li D D, Zhang L P, Zhao F, Yang X B, Liu H Z and Wang G H 2018 Opt. Lett. 43 3626
[23] Ring J D, Lindberg J, Mourka A, Mazilu M, Dholakia K and Dennis M R 2012 Opt. Express 20 18955
[24] Singh S, Mishra S K and Mishra A K 2023 J. Opt. Soc. Am. B 40 2287
[25] Papazoglou D G, Efremidis N K, Christodoulides D N and Tzortzakis S 2011 Opt. Lett. 36 1842
[26] Wang F, Zhao C L, Dong Y, Dong Y M and Cai Y J 2014 Appl. Phys. B 117 905
[27] Jimenez J 2004 Arbor-Ciencia Pensamiento Y Cul. 178 589
[28] Schmidt J 2010 Numerical Simulation of Optical Wave Propagation With Examples in Matlab (Washington: Society of Photo-Optical Instrumentation Engineers Press) p. 155
[29] Gu Y and Gbur G 2010 Opt. Lett. 35 3456
[30] Pan Y Q, Zhao M L, Zhang M M, Dou J T, Zhao J, Li B and Hu Y Y 2023 Opt. & Laser Technol. 159 109024
[31] Li C Q, Zhang H Y, Wang T F, Liu L S and Guo J 2013 Acta Phys. Sin. 62 224203 (in Chinese)
[32] Mabena C and Roux F 2019 Phys. Rev. A 99 013828
[33] Berman G P, Gorshkov V N and Torous S V 2011 J. Phys. B At. Mol. Opt. Phys. 44 055402
[34] Hu Y, Bongiovanni D, Chen Z G and Morandotti R 2013 Phys. Rev. A 88 043809
[35] Vaveliuk P, Martinez-Matos O, Ren Y X and Lu R D 2017 Phys. Rev. A 95 063838
[36] Berry M and Upstill C 1980 IV Catastrophe Optics: Morphologies of Caustics and Their Diffraction Patterns (Bristol: University of Bristol press) p. 268
[1] Dynamic properties of rumor propagation model induced by Lévy noise on social networks
Ying Jing(景颖), Youguo Wang(王友国), Qiqing Zhai(翟其清), and Xianli Sun(孙先莉). Chin. Phys. B, 2024, 33(9): 090203.
[2] Optical storage of circular airy beam in atomic vapor
Hong Chang(常虹), Xin Yang(杨欣), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2024, 33(8): 084202.
[3] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[4] Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration
Guang-Wei Lu(卢光伟), Yao-Jun Li(李曜均), Xi-Chen Hu(胡曦辰), Si-Yu Chen(陈思宇), Hao Xu(徐豪), Ming-Yang Zhu(祝铭阳), Wen-Chao Yan(闫文超), and Li-Ming Chen(陈黎明). Chin. Phys. B, 2024, 33(6): 064101.
[5] Optical trapping capability of tornado circular Pearcey beams
Na-Na Liu(刘娜娜), Xiao-Ying Tang(唐晓莹), Shun-Yu Liu(刘舜禹), and Yi Liang(梁毅). Chin. Phys. B, 2024, 33(5): 054201.
[6] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[7] Diffraction deep neural network-based classification for vector vortex beams
Yixiang Peng(彭怡翔), Bing Chen(陈兵), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034205.
[8] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[9] Numerical simulation for the initial state of avalanche in polydisperse particle systems
Ren Han(韩韧), Ting Li(李亭), Zhipeng Chi(迟志鹏), Hui Yang(杨晖), and Ran Li(李然). Chin. Phys. B, 2024, 33(2): 024501.
[10] Attosecond ionization time delays in strong-field physics
Yongzhe Ma(马永哲), Hongcheng Ni(倪宏程), and Jian Wu(吴健). Chin. Phys. B, 2024, 33(1): 013201.
[11] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[12] An improved ISR-WV rumor propagation model based on multichannels with time delay and pulse vaccination
Yafang Dong(董雅芳), Liangán Huo(霍良安), Xiaoxiao Xie(谢笑笑), and Ming Li(李明). Chin. Phys. B, 2023, 32(7): 070205.
[13] Ultraviolet metalens and metalens array of focused vortex beams
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波). Chin. Phys. B, 2023, 32(6): 064206.
[14] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
[15] Stability and optimal control for delayed rumor-spreading model with nonlinear incidence over heterogeneous networks
Xupeng Luo(罗续鹏), Haijun Jiang(蒋海军), Shanshan Chen(陈珊珊), and Jiarong Li(李佳容). Chin. Phys. B, 2023, 32(5): 058702.
No Suggested Reading articles found!