ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration |
Guang-Wei Lu(卢光伟)1, Yao-Jun Li(李曜均)1, Xi-Chen Hu(胡曦辰)1, Si-Yu Chen(陈思宇)1, Hao Xu(徐豪)1, Ming-Yang Zhu(祝铭阳)1, Wen-Chao Yan(闫文超)1,2,†, and Li-Ming Chen(陈黎明)1,2,‡ |
1 Key Laboratory for Laser Plasmas of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; 2 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration (LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima (FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle (for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.
|
Received: 24 November 2023
Revised: 26 December 2023
Accepted manuscript online: 28 February 2024
|
PACS:
|
41.75.Ht
|
(Relativistic electron and positron beams)
|
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
02.70.Dh
|
(Finite-element and Galerkin methods)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1601700), the National Natural Science Foundation of China (Grant Nos. 12074251, 11991073, 12335016, 12305272, and 12105174), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25000000 and XDA25030400), and Yangyang Development Fund, China. |
Corresponding Authors:
Wen-Chao Yan, Li-Ming Chen
E-mail: wenchaoyan@sjtu.edu.cn;lmchen@sjtu.edu.cn
|
Cite this article:
Guang-Wei Lu(卢光伟), Yao-Jun Li(李曜均), Xi-Chen Hu(胡曦辰), Si-Yu Chen(陈思宇), Hao Xu(徐豪), Ming-Yang Zhu(祝铭阳), Wen-Chao Yan(闫文超), and Li-Ming Chen(陈黎明) Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration 2024 Chin. Phys. B 33 064101
|
[1] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229 [2] Di Mitri S and Cornacchia M 2014 Phys. Rep. 539 1 [3] Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X and Xu Z Z 2016 Phys. Rev. Lett. 117 124801 [4] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F and Malka V 2004 Nature 431 541 [5] Geddes C G R, Toth Cs, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J and Leemans W P 2004 Nature 431 538 [6] Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R and Krushelnick K 2004 Nature 431 535 [7] Zhu X, Li B, Liu F, Li J, Bi Z, Ge X, Deng H, Zhang Z, Cui P, Lu L, Yan W, Yuan X, Chen L, Cao Q, Liu Z, Sheng Z, Chen M and Zhang J 2023 Phys. Rev. Lett. 130 215001 [8] Blumenfeld I, Clayton C E, Decker F J, Hogan M J, Huang C, Ischebeck R, Iverson R, Joshi C, Katsouleas T, Kirby N, Lu W, Marsh K A, Mori W B, Muggli P, Oz E, Siemann R H, Walz D and Zhou M 2007 Nature 445 741 [9] Hue C S, Wan Y, Levine E Y and Malka V 2023 Matter and Radiation at Extremes 8 024401 [10] Wang J, Zeng M, Li D, Wang X, Lu W and Gao J 2022 Matter and Radiation at Extremes 7 054001 [11] Manahan G G, Habib A F, Scherkl P, Delinikolas P, Beaton A, Knetsch A, Karger O, Wittig G, Heinemann T, Sheng Z M, Cary J R, Bruhwiler D L, Rosenzweig J B and Hidding B 2017 Nat. Commun. 8 15705 [12] Huang K, Jin Z, Nakanii N, Hosokai T and Kando M 2023 Phys. Rev. Accel. Beams 26 112801 [13] Downer M C, Zgadzaj R, Debus A, Schramm U and Kaluza M C 2018 Rev. Mod. Phys. 90 035002 [14] Pollock B B, Clayton C E, Ralph J E, Albert F, Davidson A, Divol L, Filip C, Glenzer S H, Herpoldt K, Lu W, Marsh K A, Meinecke J, Mori W B, Pak A, Rensink T C, Ross J S, Shaw J, Tynan G R, Joshi C and Froula D H 2011 Phys. Rev. Lett. 107 045001 [15] Litos M, Adli E, An W, Clarke C I, Clayton C E, Corde S, Delahaye J P, England R J, Fisher A S, Frederico J, Gessner S, Green S Z, Hogan M J, Joshi C, Lu W, Marsh K A, Mori W B, Muggli P, Vafaei-Najafabadi N, Walz D, White G, Wu Z, Yakimenko V and Yocky G 2014 Nature 515 92 [16] Yan W, Chen L, Li D, Zhang L, Hafz N A M, Dunn J, Ma Y, Huang K, Su L, Chen M, Sheng Z and Zhang J 2014 Proc. Natl. Acad. Sci. USA 111 5825 [17] Mirzaie M, Li S, Zeng M, Hafz N A M, Chen M, Li G Y, Zhu Q J, Liao H, Sokollik T, Liu F, Ma Y Y, Chen L M, Sheng Z M and Zhang J 2015 Sci. Rep. 5 14659 [18] Golovin G, Yan W, Luo J, Fruhling C, Haden D, Zhao B, Liu C, Chen M, Chen S, Zhang P, Banerjee S and Umstadter D 2018 Phys. Rev. Lett. 121 104801 [19] Feng J, Li Y, Wang J, Li D, Li F, Yan W, Wang W and Chen L 2019 Sci. Rep. 9 2531 [20] Jalas S, Kirchen M, Messner P, Winkler P, Hübner L, Dirkwinkel J, Schnepp M, Lehe R and Maier A R 2021 Phys. Rev. Lett. 126 104801 [21] Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X and Xu Z Z 2021 Phys. Rev. Lett. 126 214801 [22] Chen Q, Maslarova D, Wang J, Lee S X, Horný V and Umstadter D 2022 Phys. Rev. Lett. 128 164801 [23] Rabhi N, Batani D, Boutoux G, Ducret J E, Jakubowska K, LantuejoulThfoin I, Nauraye C, Patriarca A, Saïd A, Semsoum A, Serani L, Thomas B and Vauzour B 2017 Rev. Sci. Instrum. 88 113301 [24] Singh S, Slavicek T, Hodak R, Versaci R, Pridal P and Kumar D 2017 Rev. Sci. Instrum. 88 075105 [25] Wang T Y, Zhou Z Q, Peng J P, Gao Y K and Zhang Y H 2022 Chin. Phys. B 31 076107 [26] Streeter M J V, Colgan C, Cobo C C, Arran C, Los E E, Watt R, Bourgeois N, Calvin L, Carderelli J, Cavanagh N, Dann S J D, Fitzgarrald R, Gerstmayr E, Joglekar A S, Kettle B, McKenna P, Murphy C D, Najmudin Z, Parsons P, Qian Q, Rajeev P P, Ridgers C P, Symes D R, Thomas A G R, Sarri G and Mangles S P D 2023 High Power Laser Sci. Eng. 11 1 [27] Batygin Y K 2005 Detectors and Associated Equipment 539 455 [28] Lund S M, Kikuchi T and Davidson R C 2009 Phys. Rev. ST Accel. Beams 12 114801 [29] Lee S J R, Ding F, Manby F R and Miller T F 2019 J. Chem. Phys. 151 064112 [30] Amarasinghe P A G M, Abeygunawardane S K and Singh C 2020 IEEE Access 8 138661 [31] Brömmelhoff K, Henze S, Gerstenberger R, Fischer T, Schell N, Uhlmann E and Reimers W 2013 Journal of Materials Processing Technology 213 2211 [32] Sun X, Yu Y, Yang Y, Dong J, Böhm C and Chen X 2020 Chin. Phys. B 29 108901 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|