ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Frequency-tunable single-photon router based on a microresonator containing a driven three-level emitter |
Jin-Song Huang(黄劲松)1,†, Jing-Lan Hu(胡菁兰)1, Yan-Ling Li(李艳玲)1, and Zhong-Hui Xu(徐中辉)2 |
1 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2 Faculty of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China |
|
|
Abstract We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emitter. Quantum routing probability in the output port is obtained via the real-space Hamiltonian. By adjusting the resonator-emitter coupling and the drive, the desired continuous central frequencies for the resonance peaks of routing photons can be manipulated nearly linearly, with the assistance of Rabi splitting effect and optical Stark shift. The proposed routing system may provide potential applications in designing other frequency-modulation quantum optical devices, such as multiplexers, filters, and so on.
|
Received: 31 December 2023
Revised: 11 March 2024
Accepted manuscript online: 21 March 2024
|
PACS:
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
03.65.Nk
|
(Scattering theory)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12365003, 12364024, and 11864014) and the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20212BAB201014 and 20224BAB201023). |
Corresponding Authors:
Jin-Song Huang
E-mail: jshuangjs@126.com
|
Cite this article:
Jin-Song Huang(黄劲松), Jing-Lan Hu(胡菁兰), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉) Frequency-tunable single-photon router based on a microresonator containing a driven three-level emitter 2024 Chin. Phys. B 33 064202
|
[1] Kimble H J 2008 Nature 453 1023 [2] Goban A, Hung C L, Yu S P, Hood J D, Muniz J A, Lee J H, Martin M J, McClung A C, Choi K S, Chang D E, Painter O and Kimble H J 2014 Nat. Commun. 5 3808 [3] Shomroni I, Rosenblum S, Lovsky Y, Brechler O, Guendelman G and Dayan B 2014 Science 345 903 [4] Li X M and Wei L F 2015 Phys. Rev. A 92 063836 [5] Huang J S, Zhong J T, Li Y L, Xu Z H and Xiao Q S 2020 Quantum Inf. Process. 19 290 [6] Wu J N, Dong J, Xu Y, Zou B and Zhang Y 2022 Phys. Rev. Appl. 18 054007 [7] Zhao Y J, Tan N, Yu D, Liu B and Liu W M 2020 Phys. Rev. Res. 2 033484 [8] Hoi I C, Wilson C M, Johansson G, Palomaki T, Peropadre B and Delsing P 2011 Phys. Rev. Lett. 107 073601 [9] Xia K and Twamley J 2013 Phys. Rev. X 3 031013 [10] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604 [11] Lu J, Wang Z H and Zhou L 2015 Opt. Express 23 022955 [12] Huang J S, Wang J W, Li Y L, Wang Y and Huang Y W 2019 Quantum Inf. Process. 18 59 [13] Hu C Y 2016 Phys. Rev. B 94 245307 [14] Hu C Y 2017 Sci. Rep. 7 45582 [15] Agarwal G S and Huang S 2012 Phys. Rev. A 85 021801 [16] Li X, Zhang W Z, Xiong B and Zhou L 2016 Sci. Rep. 6 39343 [17] Aoki T, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J and Kimble H J 2009 Phys. Rev. Lett. 102 083601 [18] Cao C, Duan Y W, Chen X, Zhang R, Wang T J and Wang C 2017 Opt. Express 25 016931 [19] Huang J S, Wang J W, Wang Y, Li Y L and Huang Y W 2018 Quantum Inf. Process. 17 78 [20] Zhang J H, He D Y, Luo G Y, Wang B D and Huang J S 2021 Chin. Phys. B 30 034204 [21] Gonzalez-Ballestero C, Moreno E, Garcia-Vidal F J and Tudela A G 2016 Phys. Rev. A 94 063817 [22] Yan C H, Li Y, Yuan H D and Wei L F 2018 Phys. Rev. A 97 023821 [23] Li X M and Wei L F 2018 Opt. Commun. 425 13 [24] Liu J S, Yang Y, Lu J and Zhou L 2022 Chin. Phys. B 31 110301 [25] Sun X J, Liu W X, Chen H and Li H R 2023 Commun. Theor. Phys. 75 035103 [26] Del’Haye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R and Kippenberg T J 2011 Phys. Rev. Lett. 107 063901 [27] Miller S A, Okawachi Y, Ramelow S, Luke K, Dutt A, Farsi A, Gaeta A L and Lipson M 2015 Opt. Express 23 021527 [28] Cai G Q, Lu Y N, Ma X S, Cheng M T and Huang X S 2023 Opt. Express 31 33015 [29] Khani S, Danaie M and Rezaei P 2018 Opt. Commun. 420 147 [30] Khani S, Danaie M and Rezaei P 2019 Plasmonics 14 53 [31] Ren L, Yuan S, Zhu S, Shi L, Zhang X 2022 Opt. Lett. 47 468442 [32] Zhang B W, Chen N, Lu X D, Hu Y H, Yang Z H, Zhang X L and Xu J 2022 Micromachines 13 89 [33] Tian M E, Long Z H, Feng L J, He L L and Zhang T L 2022 Chin. Phys. B 31 078401 [34] Zhang X W, Liu S B, Yu Q M, Wang L L, Liao K and Lou J 2022 Chin. Phys. B 31 114101 [35] Han L L, Wang Y, Wu Q, Zhang S, Wang S and Li M 2022 Chin. Phys. B 31 018506 [36] Huang J S, Feng X M, Xu Z H, Li Y L and Wu K Y 2023 Quantum Inf. Process. 22 285 [37] Shen J T and Fan S H 2009 Phys. Rev. A 79 023837 [38] Witthaut D and Sørensen A S 2010 New J. Phys. 12 043052 [39] Srinivasan K and Painter O 2007 Phys. Rev. A 75 023814 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|