|
|
Exceptional points and quantum dynamics in a non-Hermitian two-qubit system |
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛)†, Zhen-Shan Yang(杨震山)‡, Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙) |
School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China |
|
|
Abstract We study the exceptional-point (EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide the system-parameter space into $\mathcal{PT}$-symmetry unbroken, partially broken and fully broken regimes, each with distinct quantum-dynamics characteristics. Particularly, in the partially broken regime, while the $\mathcal{PT}$-symmetry is generally broken in the whole four-dimensional Hilbert space, it is preserved in a two-dimensional subspace such that the quantum dynamics in the subspace are similar to those in the $\mathcal{PT}$-symmetry unbroken regime. In addition, we reveal that the competition between the inter-qubit coupling and the intra-qubit driving gives rise to a complex pattern in the EP variation with system parameters.
|
Received: 09 December 2023
Revised: 29 January 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: This work is partly funded by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2021MA091 and ZR2018MA044), Introduction and Cultivation Plan of Youth Innovation Talents for Universities of Shandong Province (Research and Innovation Team on Materials Modification and Optoelectronic Devices at extreme conditions). |
Corresponding Authors:
Zhen-Tao Zhang, Zhen-Shan Yang
E-mail: zhzhentao@163.com;yangzhenshan@lcu.edu.cn
|
Cite this article:
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙) Exceptional points and quantum dynamics in a non-Hermitian two-qubit system 2024 Chin. Phys. B 33 060308
|
[1] Konotop V V, Yang J and Zezyulin D A 2016. Rev. Mod. Phys. 88 035002 [2] Longhi S 2017 Phys. Rev. A 95 012125 [3] Zhao W L, Wang J, Wang X and Tong P 2019 Phys. Rev. E 99 042201 [4] Ashida Y, Gong Z and Ueda M 2020 Adv. Phys. 69 249 [5] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005 [6] Tang J, Hu Z, Zeng Z Y, Xiao J, Li L, Chen Y, Chen A X and Luo X 2022 J. Phys. B: At. Mol. Opt. Phys. 55 245301 [7] Zhang H, Peng M, Xu X W and Jing H 2022 Chin. Phys. B 31 014215 [8] Li Z, Hu X, Xiao J, Chen Y and Luo X 2023 Phys. Rev. A 108 052211 [9] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [10] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808 [11] Jing, H, Özdemir S K, Lü X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604 [12] Assawaworrarit S, Yu X and Fan S 2017 Nature 546 387 [13] J. Zhang, Peng B, Özdemir Ş K, Pichler K, Krimer D O, Zhao G, Nori F, Liu Y, Rotter S and Yang L 2018 Nat. Photon. 12 479 [14] Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H and Chen H 2021 Phys. Rev. Appl. 15 014009 [15] Huang Y, Yin Z Q and Yang W L 2016 Phys. Rev. A 94 022302 [16] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117 [17] Wu Y, Liu W, Geng J, Song X, Ye X, Duan C K, Rong X and Du J 2019 Science 364 878 [18] Li J, Harter A K, Liu J, Melo L de, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855 [19] Naghiloo M, Abbasi M, Joglekar Y N and Murch K W 2019 Nat. Phys. 15 1232 [20] Li L, Lee C H and Gong J 2020 Phys. Rev. Lett. 124 250402 [21] Yu S, Meng Y, Tang J S, Xu X Y, Wang Y T, Yin P, Ke Z J, Liu W, Li Z P, Yang Y Z, Chen G, Han Y J, Li C F and Guo G C 2020 Phys. Rev. Lett. 125 240506 [22] Wang W C, Zhou Y L, Zhang H L, Zhang J, Zhang M C, Xie Y, Wu C W, Chen T, Ou B Q, Wu W, Jing H and Chen P X 2021 Phys. Rev. A 103 L020201 [23] Ding L, Shi K, Zhang Q, Shen D, Zhang X and Zhang W 2021 Phys. Rev. Lett. 126 083604 [24] Zhang J W, Zhang J Q, Ding G Y, Li J C, Bu J T, Wang B, Yan L L, Su S L, Chen L, Nori F, Özdemir Ş, K, Zhou F, Jing H and Feng M 2022 Nat. Commun. 13 6225 [25] Klauck F, Teuber L, Ornigotti M, Heinrich M, Scheel S and Szameit A 2019 Nat. Photon. 13 883 [26] Liu W, Wu Y, Duan C K, Rong X and Du J 2021 Phys. Rev. Lett. 126 170506 [27] Abbasi M, Chen W, Naghiloo M, Joglekar Y N and Murch K W 2022 Phys. Rev. Lett. 128 160401 [28] Miri M A and Alù A 2019 Science 363 eaar7709 [29] Minganti F, Miranowicz A, Chhajlany R W and Nori F 2019 Phys. Rev. A 100 062131 [30] Chen W, Abbasi M, Ha B, Erdamar S,Joglekar Y N and Murch K W 2022 Phys. Rev. Lett. 128 110402 [31] Peng B, Özdemir Ş K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F and Yang L 2014 Science 346 328 [32] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901 [33] Shu X, Li A, Hu G, Wang J, Alù A and Chen L 2022 Nat. Commun. 13 2123 [34] Schumer A, Liu Y, Leshin J, Ding L, Alahmadi Y, Hassan A U, Nasari H, Rotter S, Christodoulides D N, LiKamWa P and Khajavikhan M 2022 Science 375 884 [35] Gopalakrishnan S and Gullans M J 2021 Phys. Rev. Lett. 126 170503 [36] Turkeshi X and Schiró M 2023 Phys. Rev. B 107 L020403 [37] Li Z Z, Chen W, Abbasi M, Murch K W and Whaley K B 2023 Phys. Rev. Lett. 131 100202 [38] Zhang J, Zhou Y L, Zuo Y L, Chen P X, Jing H and Kuang L M 2023 arXiv:2305.19034v1 [quant-ph] [39] Zhang Y X, Zhang Z T, Wei X Z, Liang B L, Mei F and Yang Z S 2023 arXiv:2308.16079v1 [quant-ph] [40] Cao P C and Zhu X F 2021 Chin. Phys. B 30 030505 [41] Ding P Z and Yi W 2022 Chin. Phys. B 31 010309 [42] Bu J T, Zhang J Q, Ding G Y, Li J C, Zhang J W, Wang B, Ding W Q, Yuan W F, Chen L, Özdemir Ş K, Zhou F, Jing H and Feng M 2023 Phys. Rev. Lett. 130 110402 [43] Chen S L, Chen G Y and Chen Y N 2014 Phys. Rev. A 90 054301 [44] Kumar A, Murch K W and Joglekar Y N 2022 Phys. Rev. A 105 012422 [45] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079 [46] Huber J, Kirton P, Rotter S and Rabl P 2020 SciPost Phys. 9 052 [47] Kawabata K, Shiozaki K and Ryu S 2021 Phys. Rev. Lett. 126 216405 [48] Roccati F, Lorenzo S, Palma G M, Landi G T, Brunelli M and Ciccarello F 2021 Quantum Sci. Technol. 6 025005 [49] Hu Z, Zeng Z Y, Tang J and Luo X B 2022 Acta Phys. Sin. 71 074207 (in Chinese) [50] Li J Z, Zhao W L and Liu J 2023 Phys. Rev. A 107 032208 [51] Chen W, Abbasi M, Joglekar Y N and Murch K W 2021 Phys. Rev. Lett. 127 140504 [52] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046 [53] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [54] Fang Y L, Zhao J L, Chen D X, Zhou Y H, Zhang Y, Wu Q C, Yang C P and Nori F 2022 Phys. Rev. Research 4 033022 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|