Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100309    DOI: 10.1088/1674-1056/ac0520
Special Issue: SPECIAL TOPIC — Non-Hermitian physics
SPECIAL TOPIC—Non-Hermitian physics Prev   Next  

Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation

Zhan Wang(王战)1,2, Zhongcheng Xiang(相忠诚)1, Tong Liu(刘桐)1,2, Xiaohui Song(宋小会)1, Pengtao Song(宋鹏涛)1,2, Xueyi Guo(郭学仪)1, Luhong Su(苏鹭红)1,2, He Zhang(张贺)1,2, Yanjing Du(杜燕京)1,4, and Dongning Zheng(郑东宁)1,2,3,†
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 China University of Geosciences, Beijing 100083, China
Abstract  Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal (PT) symmetry show peculiar phenomena, such as the presence of an exceptional point (EP) at which the PT symmetry is broken and two resonant modes of the Hamiltonian become degenerate. Near the EP, the system could be more sensitive to external perturbations and this may lead to enhanced sensing. In this paper, we present experimental results on the observation of PT symmetry broken transition and the EP using a tunable superconducting qubit. The quantum system of investigation is formed by the two levels of the qubit and the energy loss of the system to the environment is controlled by a method of parametric modulation of the qubit frequency. This method is simple with no requirements for additional elements or qubit device modifications. We believe it can be easily implemented on multi-qubit devices that would be suitable for further exploration of non-Hermitian physics in more complex and diverse systems.
Keywords:  exceptional point      parity-time-reversal (PT) symmetry      longitudinal field modulation  
Received:  07 May 2021      Revised:  22 May 2021      Accepted manuscript online:  26 May 2021
PACS:  03.67.-a (Quantum information)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2017YFA0304300 and 2016YFA0300600), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303030001), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
Corresponding Authors:  Dongning Zheng     E-mail:  dzheng@iphy.ac.cn

Cite this article: 

Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Tong Liu(刘桐), Xiaohui Song(宋小会), Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Luhong Su(苏鹭红), He Zhang(张贺), Yanjing Du(杜燕京), and Dongning Zheng(郑东宁) Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation 2021 Chin. Phys. B 30 100309

[1] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11
[2] Özdemir S K, Rotter S, Nori F and Yang L 2019 Nat. Material 18 783
[3] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[4] Zheng A, Zhang G Y, Chen H Y, Mei T T and Liu J B 2017 Scientific Reports 7 14001
[5] Ramezani, H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A 82 43803
[6] Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S H, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
[7] Chang, L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G Y, Wang G Z and Xiao M 2014 Nat. Photo. 8 524
[8] Guo, A, Salamo G L, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[9] Brandstetter M, Liertzer M, Deutsch C, Klang P, Schöberl J, Türeci H E, Strasser G, Unterrainer K and Rotter S 2014 Nat. Commun. 5 4034
[10] Peng B, Özdemir S K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F and Yang L. 2014 Science 346 328
[11] Hodaei H, Hassan A, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187
[12] Chen W, Özdemir S K, Zhao G M, Wiersig J and Yang L 2017 Nature 548 192
[13] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
[14] Li L Z, Cao Y, Zhi, Y Y, Zhang J J, Zhou Y T, Feng X H, Guan B O and Yao J P 2020 Sci. Appl. 9 169
[15] Lee S B, Yang J, Moon S, Lee S Y, Shim J B, Kim S W, Lee J H and An K 2009 Phys. Rev. Lett. 103 134101
[16] Zhu J G, Özdemir Ş K, He L and Yang L 2010 Opt. Express 18 23535
[17] Peng B, Özdemir Ş K, Liertzer M, Chen W J, Kramer J H, Yilmaz H, Wiersig J, Rotter S and Yang L 2016 Proc. Natl. Acad. Sci. USA 113 6845
[18] Xu H, Mason D, Jiang L Y and Harris J G E 2016 Nature 537 80
[19] Djorwe P, Pennec Y and Djafari-Rouhani B 2019 Phys. Rev. Appl. 12 024002
[20] Wang B, Liu Z X, Kong C, Xiong H and Wu Y 2019 Optics Express 27 8069
[21] Li J M, Harter A K, Liu J, Melo L D, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855
[22] Jiang Y, Mei Y F, Zuo Y, Li J S, Wen J M and Du S W 2019 Phys. Rev. Lett. 123 193604
[23] Xu J, Du Y X, Huang W and Zhang D W 2017 Opt. Express 25 15768
[24] Liu W Q, Wu Y, Duan C K, Rong X and Du J F 2021 Phys. Rev. Lett. 126 170506
[25] Wu Y, Liu W Q, Geng J P, Song X R, Ye X Y, Duan C K, Rong X and Du J F 2019 Science 364 878
[26] Naghiloo M, Abbasi M, Joglekar Y N and Murch K W 2019 Nat. Phys. 15 1232
[27] Partanen M, Goetz J, Tan K Y, et al. 2019 Phys. Rev. B 100 134505
[28] Wang W C, Zhou Y L, Zhang H L, et al. 2021 Phys. Rev. A 103 L020201
[29] Ding L Y, Shi K Y, Zhang Q X, Shen D N, Zhang X and Zhang W 2021 Phys. Rev. Lett. 126 083604
[30] Zhou Y, Zhang Z X, Yin Z L, et al. 2021 arXiv:2103.11315
[31] Peterer M J, Bader S J, Jin X, Yan F, Kamal A, Gudmundsen T J, Leek P J, Orlando T, Oliver W and Gustavsson S 2015 Phys. Rev. Lett. 114 010501
[32] Mostafazadeh A 2002 Math. Phys. 43 205
[1] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[2] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[3] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[4] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[5] Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Jie Li(李洁), Yirong Jin(金贻荣), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(7): 074206.
[6] Fabry-Pérot resonance coupling associated exceptional points in a composite grating structure
Zhi-Sen Jiang(蒋之森), De-Jiao Hu(胡德娇), Lin Pang(庞霖), Fu-Hua Gao(高福华), Ping Wang(王平). Chin. Phys. B, 2018, 27(5): 054201.
[7] Microscale vortex laser with controlled topological charge
Xing-Yuan Wang(王兴远), Hua-Zhou Chen(陈华洲), Ying Li(黎颖), Bo Li(李波), Ren-Min Ma(马仁敏). Chin. Phys. B, 2016, 25(12): 124211.
No Suggested Reading articles found!