1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 China University of Geosciences, Beijing 100083, China
Abstract Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal (PT) symmetry show peculiar phenomena, such as the presence of an exceptional point (EP) at which the PT symmetry is broken and two resonant modes of the Hamiltonian become degenerate. Near the EP, the system could be more sensitive to external perturbations and this may lead to enhanced sensing. In this paper, we present experimental results on the observation of PT symmetry broken transition and the EP using a tunable superconducting qubit. The quantum system of investigation is formed by the two levels of the qubit and the energy loss of the system to the environment is controlled by a method of parametric modulation of the qubit frequency. This method is simple with no requirements for additional elements or qubit device modifications. We believe it can be easily implemented on multi-qubit devices that would be suitable for further exploration of non-Hermitian physics in more complex and diverse systems.
(Foundations of quantum mechanics; measurement theory)
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2017YFA0304300 and 2016YFA0300600), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303030001), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Tong Liu(刘桐), Xiaohui Song(宋小会), Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Luhong Su(苏鹭红), He Zhang(张贺), Yanjing Du(杜燕京), and Dongning Zheng(郑东宁) Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation 2021 Chin. Phys. B 30 100309
[1] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys.14 11 [2] Özdemir S K, Rotter S, Nori F and Yang L 2019 Nat. Material18 783 [3] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett.106 213901 [4] Zheng A, Zhang G Y, Chen H Y, Mei T T and Liu J B 2017 Scientific Reports7 14001 [5] Ramezani, H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A82 43803 [6] Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S H, Nori F, Bender C M and Yang L 2014 Nat. Phys.10 394 [7] Chang, L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G Y, Wang G Z and Xiao M 2014 Nat. Photo.8 524 [8] Guo, A, Salamo G L, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett.103 093902 [9] Brandstetter M, Liertzer M, Deutsch C, Klang P, Schöberl J, Türeci H E, Strasser G, Unterrainer K and Rotter S 2014 Nat. Commun.5 4034 [10] Peng B, Özdemir S K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F and Yang L. 2014 Science346 328 [11] Hodaei H, Hassan A, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature548 187 [12] Chen W, Özdemir S K, Zhao G M, Wiersig J and Yang L 2017 Nature548 192 [13] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature488 167 [14] Li L Z, Cao Y, Zhi, Y Y, Zhang J J, Zhou Y T, Feng X H, Guan B O and Yao J P 2020 Sci. Appl.9 169 [15] Lee S B, Yang J, Moon S, Lee S Y, Shim J B, Kim S W, Lee J H and An K 2009 Phys. Rev. Lett.103 134101 [16] Zhu J G, Özdemir Ş K, He L and Yang L 2010 Opt. Express18 23535 [17] Peng B, Özdemir Ş K, Liertzer M, Chen W J, Kramer J H, Yilmaz H, Wiersig J, Rotter S and Yang L 2016 Proc. Natl. Acad. Sci. USA113 6845 [18] Xu H, Mason D, Jiang L Y and Harris J G E 2016 Nature537 80 [19] Djorwe P, Pennec Y and Djafari-Rouhani B 2019 Phys. Rev. Appl.12 024002 [20] Wang B, Liu Z X, Kong C, Xiong H and Wu Y 2019 Optics Express27 8069 [21] Li J M, Harter A K, Liu J, Melo L D, Joglekar Y N and Luo L 2019 Nat. Commun.10 855 [22] Jiang Y, Mei Y F, Zuo Y, Li J S, Wen J M and Du S W 2019 Phys. Rev. Lett.123 193604 [23] Xu J, Du Y X, Huang W and Zhang D W 2017 Opt. Express25 15768 [24] Liu W Q, Wu Y, Duan C K, Rong X and Du J F 2021 Phys. Rev. Lett.126 170506 [25] Wu Y, Liu W Q, Geng J P, Song X R, Ye X Y, Duan C K, Rong X and Du J F 2019 Science364 878 [26] Naghiloo M, Abbasi M, Joglekar Y N and Murch K W 2019 Nat. Phys.15 1232 [27] Partanen M, Goetz J, Tan K Y, et al. 2019 Phys. Rev. B100 134505 [28] Wang W C, Zhou Y L, Zhang H L, et al. 2021 Phys. Rev. A103 L020201 [29] Ding L Y, Shi K Y, Zhang Q X, Shen D N, Zhang X and Zhang W 2021 Phys. Rev. Lett.126 083604 [30] Zhou Y, Zhang Z X, Yin Z L, et al. 2021 arXiv:2103.11315 [31] Peterer M J, Bader S J, Jin X, Yan F, Kamal A, Gudmundsen T J, Leek P J, Orlando T, Oliver W and Gustavsson S 2015 Phys. Rev. Lett.114 010501 [32] Mostafazadeh A 2002 Math. Phys.43 205
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.