Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 056102    DOI: 10.1088/1674-1056/ad3c33
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

DSAS: A new macromolecular substructure solution program based on the modified phase-retrieval algorithm

Xingke Fu(付兴科)1,4,†, Zhenxi Tan(谭振希)2,†, Zhi Geng(耿直)3,4,‡, Qian Liu(刘茜)2,§, and Wei Ding(丁玮)1,4,5,¶
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Yunlu Technology Co., Ltd., Beijing 100161, China;
3 Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Considering the pivotal role of single-wavelength anomalous diffraction (SAD) in macromolecular crystallography, our objective was to introduce {DSAS}, a novel program designed for efficient anomalous scattering substructure determination. DSAS stands out with its core components: a modified phase-retrieval algorithm and automated parameter tuning. The software boasts an intuitive graphical user interface (GUI), facilitating seamless input of essential data and real-time monitoring. Extensive testing on DSAS has involved diverse datasets, encompassing proteins, nucleic acids, and various anomalous scatters such as sulfur (S), selenium (Se), metals, and halogens. The results confirm {DSAS}'s exceptional performance in accurately determining heavy atom positions, making it a highly effective tool in the field.
Keywords:  DSAS      single-wavelength anomalous diffraction      automated parameters settings      phase-retrieval algorithm      substructure determination  
Received:  15 March 2024      Revised:  08 April 2024      Accepted manuscript online:  09 April 2024
PACS:  61.05.-a (Techniques for structure determination)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 32371280 and T2350011).
Corresponding Authors:  Zhi Geng, Qian Liu, Wei Ding     E-mail:  gengz@ihep.ac.cn;ss818cc@hotmail.com;dingwei@iphy.ac.cn

Cite this article: 

Xingke Fu(付兴科), Zhenxi Tan(谭振希), Zhi Geng(耿直), Qian Liu(刘茜), and Wei Ding(丁玮) DSAS: A new macromolecular substructure solution program based on the modified phase-retrieval algorithm 2024 Chin. Phys. B 33 056102

[1] Gao X, Shang K, Zhu K, Wang L, Mu Z, Fu X, Yu X, Qin B, Zhu H, Ding W and Cui S 2024 Nature 625 822
[2] Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N and Bourne P E 2000 Nucleic Acids Res. 28 235
[3] Hendrickson W A and Teeter M M 1981 Nature 290 107
[4] Zhang Y, El Omari K, Duman R, Liu S, Haider S, Wagner A, Parkinson G. N and Wei D 2020 Nucleic Acids Res. 48 9886
[5] Schneider B, Sweeney B A, Bateman A, Cerny J, Zok T and Szachniuk M 2023 Nucleic Acids Res. 51 9522
[6] El Omari K, Duman R, Mykhaylyk V, et al. 2023 Commun. Chem. 6 219
[7] Zhang S, Wang F, Zhang D, Liu D, Ding W, Springer T A and Song G 2023 Commun. Biol. 6 895
[8] Rose J P and Wang B C 2016 Arch. Biochem. Biophys. 602 80
[9] Weeks C M, DeTitta G T, Miller R and Hauptman H A 1993 Acta Cryst. D 49 179
[10] Schneider T R and Sheldrick G M 2002 Acta Cryst. D 58 1772
[11] Buerger M J 1959 Vector space: and its application in crystal-structure investigation (New York: Wiley) pp. 252-266
[12] Bunkóczi G, McCoy A J, Echols N, Grosse-Kunstleve R W, Adams P D, Holton J M, Read R J and Terwilliger T C 2015 Nat. Methods 12 127
[13] Hu M, Gao Z, Zhou Q, Geng Z and Dong Y 2019 Radiat. Detect. Technol. Methods 3 48
[14] Knight S 2000 Acta Cryst. D 56 42
[15] Rius J and Torrelles X 2022 Acta Cryst. A 78 473
[16] Rius J 2011 XLENS v1: a Computer Program for Solving Crystal Structures from Diffraction Data by Direct Methods Institut de Ciència de Materials de Barcelona, CSIC, Spain
[17] Dumas C and van der Lee A 2008 Acta Cryst. D 64 864
[18] Skubák P 2018 Acta Cryst. D 74 117
[19] Luke D R 2005 Inverse Probl. 21 37
[20] Martin A V, Wang F, Loh N D, et al. 2012 Opt. Express 20 16650
[21] Oszlányi G and S ut ö A 2005 Acta Cryst. A 61 147
[22] Coelho A 2007 Acta Cryst. A 63 400
[23] Sheldrick G 2008 Acta Cryst. A 64 112
[24] Collaborative 1994 Acta Cryst. D 50 760
[25] Oszlányi G and S ut ö A 2008 Acta Cryst. A 64 123
[26] Usón I and Sheldrick G M 2018 Acta Cryst. D 74 106
[27] Pannu N S, McCoy A J and Read R. J 2003 Acta Cryst. D 59 1801
[28] Dall’Antonia F and Schneider T R 2006 J. Appl. Cryst. 39 618
[29] Skubák P and Pannu N S 2013 Nat. Commun. 4 2777
[30] Ding W, Zhang T, He Y, Wang J, Wu L, Han P, Zheng C, Gu Y, Zeng L, Hao Q and Fan H 2020 J. Appl. Cryst. 53 253
[31] Ding W, Wang X T and Yi Y Y 2019 Chin. Phys. B 28 116101
[1] Development of “Parameter space screening”-based single-wavelength anomalous diffraction phasing and structure determination pipeline
Wei Ding(丁玮), Xiao-Ting Wang(王小婷), Yang-Yang Yi(易阳旸). Chin. Phys. B, 2019, 28(11): 116101.
[2] New expression of bimodal phase distributions in direct-method phasing of protein single-wavelength anomalous diffraction data
Zhang Tao (张涛), Gu Yuan-Xin (古元新), Zheng Chao-De (郑朝德), Fan Hai-Fu (范海福). Chin. Phys. B, 2010, 19(8): 086102.
No Suggested Reading articles found!