|
|
Enhancing quantum temporal steering via frequency modulation |
Mengkai Wu(吴孟凯) and Weiwen Cheng(程维文)† |
Institute of Signal Processing & Transmission, Nanjing University of Posts and Telecommunication, Nanjing 210003, China |
|
|
Abstract Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence. However, little attention has been given to temporal-like correlations, such as quantum temporal steering (TS), in this context. In this work, we investigate TS in a frequency-modulated two-level system coupled to a zero-temperature reservoir in both the weak and strong coupling regimes. We analyze the impact of various frequency-modulated parameters on the behavior of TS and non-Markovian. The results demonstrate that appropriate frequency-modulated parameters can enhance the TS of the two-level system, regardless of whether the system is experiencing Markovian or non-Markovian dynamics. Furthermore, a suitable ratio between modulation strength and frequency ( i.e., all zeroes of the $0$th Bessel function $J_{0}({\delta}/{\varOmega})$) can significantly enhance TS in the strong coupling regime. These findings indicate that efficient and effective manipulation of quantum TS can be achieved through a frequency-modulated approach.
|
Received: 03 December 2023
Revised: 20 January 2024
Accepted manuscript online: 02 February 2024
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62375140). |
Corresponding Authors:
Weiwen Cheng
E-mail: wwcheng@njupt.edu.cn
|
Cite this article:
Mengkai Wu(吴孟凯) and Weiwen Cheng(程维文) Enhancing quantum temporal steering via frequency modulation 2024 Chin. Phys. B 33 050306
|
[1] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402 [2] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116 [3] Skrzypczyk P, Navascués M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404 [4] Cavalcanti D and Skrzypczyk P 2017 Rep. Prog. Phys. 80 024001 [5] Piani M and Watrous J 2015 Phys. Rev. Lett. 114 060404 [6] Sainz A B, Aolita L, Brunner N, Gallego R and Skrzypczyk P 2016 Phys. Rev. A 94 012308 [7] Händchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner R F and Schnabel R 2012 Nat. Photon. 6 596 [8] Bowles J, Vértesi T, Quintino M T and Brunner N 2014 Phys. Rev. Lett. 112 200402 [9] Zhu D, Shang W M, Zhang F L and Chen J L 2022 Chin. Phys. Lett. 39 070302 [10] Chen Y Y, Guo F Z, Wei S H and Wen Q Y 2023 Chin. Phys. B 32 040309 [11] Yang H, Xing L L, Ding Z Y, Zhang G and Ye L 2022 Chin. Phys. B 31 090302 [12] Wollmann S, Walk N, Bennet A J, Wiseman H M and Pryde G J 2016 Phys. Rev. Lett. 116 160403 [13] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301 [14] He Q Y, Rosales-Zárate L, Adesso G and Reid M D 2015 Phys. Rev. Lett. 115 180502 [15] Cheng W W, Wang B W, Gong L Y and Zhao S M 2021 Quantum Inf. Processing 20 371 [16] Li C M, Chen K, Chen Y N, Zhang Q, Chen Y A and Pan J W 2015 Phys. Rev. Lett. 115 010402 [17] Wang Y, Hao Z Y, Li J K, Liu Z H, Sun K, Xu J X, Li C F and Guo G C 2023 Phys. Rev. Lett. 130 200202 [18] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112 [19] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G and Howell J C 2013 Phys. Rev. A 87 062103 [20] Zhen Y Z, Zheng Y L, Cao W F, Li L, Chen Z B, Liu N L and Chen K 2016 Phys. Rev. A 93 012108 [21] Chen Y N, Li C M, Lambert N, Chen S L, Ota Y, Chen G Y and Nori F 2014 Phys. Rev. A 89 032112 [22] Chen S L, Lambert N, Li C M, Miranowicz A, Chen Y N and Nori F 2016 Phys. Rev. Lett. 116 020503 [23] Bartkiewicz K, Černoch A, Lemr K, Miranowicz A and Nori F 2016 Phys. Rev. A 93 062345 [24] Ku H Y, Chen S L, Chen H B, Lambert N, Chen Y N and Nori F 2016 Phys. Rev. A 94 062126 [25] Liu B, Huang Y and Sun Z 2018 Ann. Phys. 530 1700373 [26] Cheng W W, Chen M, Gong L Y and Zhao S M 2021 Eur. Phys. J. D 75 75 [27] Cheng W W and Li B 2023 Quantum Inf. Processing 22 294 [28] Lo Franco R, DArrigo A, Falci G, Compagno G and Paladino E 2014 Phys. Rev. B 90 054304 [29] Xu J S, Sun K, Li C F, Xu X Y, Guo G C, Andersson E, Lo Franco R and Compagno G 2013 Nat. Commun. 4 2851 [30] Xue S B, Wu R B, Zhang W M, Zhang J, Li C W and Tarn T J 2012 Phys. Rev. A 86 052304 [31] Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 86 052322 [32] Man Z X, Xia Y J and Lo Franco R 2015 Phys. Rev. A 92 012315 [33] Maniscalco S, Francica F, Zaffino R L, Gullo N L and Plastina F 2008 Phys. Rev. Lett. 100 090503 [34] Campos Venuti L, Ma Z, Saleur H and Haas S 2017 Phys. Rev. A 96 053858 [35] Silveri M P, Tuorila J A, Thuneberg E V and Paraoanu G S 2017 Rep. Prog. Phys. 80 056002 [36] Huang J F, Liao J Q, Tian L and Kuang L M 2017 Phys. Rev. A 96 043849 [37] Beaudoin F, da Silva M P, Dutton Z and Blais A 2012 Phys. Rev. A 86 022305 [38] Han X, Wang D Y, Bai C H, Cui W X, Zhang S and Wang H F 2019 Phys. Rev. A 100 033812 [39] Ficek Z, Seke J, Soldatov A V and Adam G 2001 Phys. Rev. A 64 013813 [40] Yan Y Y, Lü Z G, Luo J Y and Zheng H 2018 Phys. Rev. A 94 033817 [41] Janowicz M 2000 Phys. Rev. A 61 025802 [42] Zhou L, Yang S, Liu Y X, Sun C P and Nori F 2009 Phys. Rev. A 80 062109 [43] Deng C, Orgiazzi J L, Shen F, Ashhab S and Lupascu A 2015 Phys. Rev. Lett. 115 133601 [44] Macovei M and Keitel C H 2014 Phys. Rev. A 90 043838 [45] Agarwal G S 1999 Phys. Rev. A 61 013809 [46] Mortezapour A and Lo Franco R 2018 Sci. Rep. 8 14304 [47] Nourmandipour A and Mortezapour A 2023 Quantum Inf. Processing 22 254 [48] Forozesh M, Mortezapour A and Nourmandipour A 2021 Eur. Phys. J. Plus 136 778 [49] Rajabalinia A, Shadfar M K, Nosrati F, Mortezapour A, Morandotti R and Lo Franco R 2022 Phys. Rev. A 106 062431 [50] Poggi P M, Lombardo F C and Wisniacki D A 2017 Europhys. Lett. 118 20005 [51] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502 [52] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401 [53] Xu Z Y, Luo S, Yang W L, Liu C and Zhu S Q 2014 Phys. Rev. A 89 012307 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|