|
|
Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system |
Jin-Song Huang(黄劲松)1,†, Hong-Wu Huang(黄红武)1, Yan-Ling Li(李艳玲)1, and Zhong-Hui Xu(徐中辉)2 |
1 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2 Faculty of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China |
|
|
Abstract We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system. Using the real-space Hamiltonian, analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles. Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference. High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range, and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms. This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement.
|
Received: 20 December 2023
Revised: 30 January 2024
Accepted manuscript online: 02 February 2024
|
PACS:
|
05.60.Gg
|
(Quantum transport)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.65.Nk
|
(Scattering theory)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12365003, 12364024, and 11864014) and the Jiangxi Provincial Natural Science Foundation (Grant Nos. 20212BAB201014 and 20224BAB201023). |
Corresponding Authors:
Jin-Song Huang
E-mail: jshuangjs@126.com
|
Cite this article:
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉) Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system 2024 Chin. Phys. B 33 050506
|
[1] Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001 [2] Shen J T and Fan S 2009 Phys. Rev. A 79 023837 [3] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501 [4] Goban A, Hung C L, Yu S P, Hood J D, Muniz J A, Lee J H, Martin M J, McClung A C, Choi K S, Chang D E, Painter O and Kimble H J 2014 Nat. Commun. 5 3808 [5] Chen G Y, Liu M H and Chen Y N 2014 Phys. Rev. A 89 053802 [6] Mukhopadhyay D and Agarwal G S 2019 Phys. Rev. A 100 013812 [7] Mukhopadhyay D and Agarwal G S 2020 Phys. Rev. A 101 063814 [8] Shu Y X, Ma X S, Huang X S, Cheng M T and Han J B 2021 Chin. Phys. B 30 104204 [9] Mukhopadhyay D and Agarwal G S 2020 Phys. Rev. A 101 063814 [10] Zheng H X and Baranger H U 2013 Phys. Rev. Lett. 110 113601 [11] Jia W Z and Cai Q Y 2022 Eur. Phys. J. Plus 137 1082 [12] Zheng H X and Baranger H U 2013 Phys. Rev. Lett. 110 113601 [13] Gonzalez-Ballestero C, Moreno E and Garcia-Vidal F J 2014 Phys. Rev. A 89 042328 [14] Facchi P, Kim M S, Pascazio S, Pepe F V, Pomarico D and Tufarelli T 2016 Phys. Rev. A 94 043839 [15] Liu A P, Cheng L Y, Guo Q, Su S L, Wang H F and Zhang S 2022 Chin. Phys. B 31 080307 [16] Zhang X Q, Xia X W, Xu J P, Li H Z and Fu Z Y 2022 Chin. Phys. B 31 074204 [17] Chen M Y, Tang J S, Tang L, Wu H D and Xia K Y 2022 Phys. Rev. Res. 4 033083 [18] Feng L J, Yan L and Gong S Q 2023 Front. Phys. 18 12304 [19] Sun J Y and Shen H Z 2023 Phys. Rev. A 107 043715 [20] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604 [21] Liu A P, Cheng L Y, Guo Q, Su S L, Wang H F and Zhang S 2019 Chin. Phys. B 28 020301 [22] Zhang J H, He D Y, Luo G Y, Wang B D and Huang J S 2021 Chin. Phys. B 30 034204 [23] Liu J S, Yang Y, Lu J and Zhou L 2022 Chin. Phys. B 31 110301 [24] Jia W Z, Wang Y W and Liu Y X 2017 Phys. Rev. A 96 053832 [25] Cao M S and Jia W Z 2021 J. Phys. B 54 055502 [26] Ai Q and Liao J Q 2010 Commun. Theor. Phys. 54 985 [27] Ahumada M, Orellana P A and Retamal J C 2018 Phys. Rev. A 98 023827 [28] Talukdar J and Blume D 2018 Phys. Rev. A 108 023702 [29] Kannan B, Ruckriegel M J, Campbell D L, Kockum A F, Braümuller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Nori F, Orlando T P, Gustavsson S and Oliver W D 2020 Nature 583 7818 [30] Feng S L and Jia W Z 2021 Phys. Rev. A 104 063712 [31] Peng Y P and Jia W Z 2023 Phys. Rev. A 108 043709 [32] Liu J Y, Jin J W, Liu H Y, Ming Y and Yang R C 2023 Quantum Inf. Process. 22 74 [33] Liu N, Wang X, Wang X, Ma X S and Cheng M T 2022 Opt. Express 30 23428 [34] Chen Y T, Du L, Guo L Z, Wang Z H, Zhang Y, Li Y and Wu J H 2022 Commun. Phys. 5 215 [35] Wang X, Yang W X, Chen A X, Li L, Shui T, Li X Y and Wu Z 2022 Quantum Sci. Technol. 7 015025 [36] Zhao W, Zhang Y and Wang Z H 2022 Front. Phys. 17 42506 [37] Du L, Zhang Y and Li Y 2022 Front. Phys. 18 12301 [38] Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H and Xu H X 2018 Chem. Rev. 118 2882 [39] Guo X, Ma Y G, Wang Y P and Tong L M 2013 Laser Photon. Rev. 7 855 [40] Li Q, Wei H and Xu H X 2014 Nano Lett. 14 3358 [41] Kuo P C, Chen G Y and Chen Y N 2016 Sci. Rep. 6 37766 [42] Huang J S, Zhang J H, Wang Y, Xu Z H and Huang Y W 2018 Opt. Commun. 419 25 [43] Ryom J S, Kim N C, Ko M C and Choe S I 2022 Plasmonics 17 949 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|