Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047402    DOI: 10.1088/1674-1056/ad1b42
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Thermal conductivity of GeTe crystals based on machine learning potentials

Jian Zhang(张健)1,2, Hao-Chun Zhang(张昊春)1,†, Weifeng Li(李伟峰)3, and Gang Zhang(张刚)2,‡
1 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
2 Institute of High Performance Computing, Agency for Science, Technology and Research(A*STAR), Singapore 138632, Singapore;
3 School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  GeTe has attracted extensive research interest for thermoelectric applications. In this paper, we first train a neuro-evolution potential (NEP) based on a dataset constructed by ab initio molecular dynamics, with the Gaussian approximation potential (GAP) as a reference. The phonon density of states is then calculated by two machine learning potentials and compared with density functional theory results, with the GAP potential having higher accuracy. Next, the thermal conductivity of a GeTe crystal at 300 K is calculated by the equilibrium molecular dynamics method using both machine learning potentials, and both of them are in good agreement with the experimental results; however, the calculation speed when using the NEP potential is about 500 times faster than when using the GAP potential. Finally, the lattice thermal conductivity in the range of 300 K—600 K is calculated using the NEP potential. The lattice thermal conductivity decreases as the temperature increases due to the phonon anharmonic effect. This study provides a theoretical tool for the study of the thermal conductivity of GeTe.
Keywords:  machine learning potentials      thermal conductivity      molecular dynamics  
Received:  13 November 2023      Revised:  23 December 2023      Accepted manuscript online:  05 January 2024
PACS:  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  74.25.fc (Electric and thermal conductivity)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.62.-c (Transition temperature variations, phase diagrams)  
Fund: Project supported by the A*STAR Computational Resource Centre through the use of its high-performance computing facilities. J. Zhang gratefully acknowledges financial support from the China Scholarship Council (Grant No. 202206120136) and is grateful to Prof. Dorde Dangic for his guidance on the use of GAP.
Corresponding Authors:  Hao-Chun Zhang, Hao-Chun Zhang     E-mail:  hczhang@hit.edu.cn;zhangg@ihpc.a-star.edu.sg

Cite this article: 

Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚) Thermal conductivity of GeTe crystals based on machine learning potentials 2024 Chin. Phys. B 33 047402

[1] Li X G, Chen J, Yu C X and Zhang G 2013 Appl. Phys. Lett. 103 013111
[2] Li D F, He J, Ding G Q, Tang Q Q, Ying Y, He J J, Zhong C Y, Liu Y, Feng C B, Sun Q L, Zhou H B, Zhou P and Zhang G 2018 Adv. Funct. Mater. 28 1801685
[3] Chen J, He J, Pan D K, Wang X T, Yang N, Zhu J J, Yang S Y A and Zhang G 2022 Sci. China-Phys. Mech. Astron. 65 117002
[4] Zhang Z W and Chen J 2018 Chin. Phys. B 27 035101
[5] Ouyang Y L, Zhang Z W, Yu C Q, He J, Yan G and Chen J 2020 Chin. Phys. Lett. 37 126301
[6] Ouyang Y L, Yu C Q, Yan G and Chen J 2021 Front. Phys. 16 1
[7] Sosso G C, Miceli G, Caravati S, Behler J and Bernasconi M 2012 Phys. Rev. B 85 174103
[8] Campi D, Donadio D, Sosso G C, Behler J and Bernasconi1 M 2015 J. Appl. Phys. 117 015304
[9] Campi D, Paulatto L, Fugallo G, Mauri F and Bernasconi M 2017 Phys. Rev. B 95 024311
[10] Ghosh K, Kusiak A, Noe P, Cyrille M C and Battaglia J L 2020 Phys. Rev. B 101 214305
[11] Dangic D, Hellman O, Fahy S and Savic I 2021 npj Comput. Mater. 7 57
[12] Fan Z Y, Zeng Z Z, Zhang C Z, Wang Y Z, Song K K, Dong H K, Chen Y and Nissila T A 2021 Phys. Rev. B 104 104309
[13] Fan Z Y 2022 J. Phys. Condens. Matter 34 125902
[14] Fan Z Y, Wang Y Z, Ying P H, Song K K, Wang J J, Wang Y, Zeng Z Z, Xu K, Lindgren E, Rahm J M, Gabourie A J, Liu J H, Dong H K, Wu J Y, Chen Y, Zhong Z, Sun J, Erhart P, Su Y J and Nissila T A 2022 J. Chem. Phys. 157 114801
[15] Dangic D, Fahy S and Savic I 2021 Materials Cloud Archive 2021.42
[16] Fan Z Y, Siro T and Harju A 2013 Comput. Phys. Commun. 184 1414
[17] Fan Z Y, Chen W, Vierimaa V and Harju A 2017 Comput. Phys. Commun. 218 10
[18] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[19] Togo A 2023 J. Phys. Soc. Jpn. 92 012001
[20] Plimpton S 1995 J. Comput. Phys. 117 1
[21] Green M S 1954 J. Chem. Phys. 22 398
[22] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[23] Kubo R, Yokota M and Nakajima S 1957 J. Phys. Soc. Jpn. 12 1203
[24] Chen J, Zhang G and Li B W 2010 Phys. Lett. A 374 2392
[25] Li J, Porter L and Yip S 1998 J. Nucl. Mater. 255 139
[26] McGaughey A J H and Kaviany M 2006 Adv. Heat Transf. 39 169
[27] Csanyi G, Winfield S, Kermode J R, DeVita A, Comisso A, Bernstein N and Payne M C 2007 IoP Comput. Phys. Newsletter Spring 2007
[28] Che J, Cagin T, Deng W and Goddard W A 2000 J. Chem. Phys. 113 6888
[29] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[30] Li J, Chen Z W, Zhang X Y, Yu H L, Wu Z H, Xie H Q, Chen Y and Pei Y Z 2017 Adv. Sci. 4 1700341
[31] Xing T, Song Q F, Qiu P F, Zhang Q H, Xia X G, Liao J C, Liu R H, Huang H, Yang J, Bai S Q, Ren D D, Shi X and Chen L D 2019 Natl. Sci. Rev. 6 944
[32] Cai S T, Hao S Q, Luo Z Z, Li X, Hadar I, Bailey T P, Hu X B, Uher C, Hu Y Y, Wolverton C, Dravid V P and Kanatzidis M G 2020 J. Mater. Chem. A 8 1193
[33] Yang X L, Tiwari J and Feng T L 2022 Mater. Today Phys. 24 100689
[34] Zhu X Y and Shao C 2022 Phys. Rev. B 106 014305
[1] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[2] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[3] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[4] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[5] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[6] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[7] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[8] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[9] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[10] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[11] Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer
Yao Xu(徐耀), Shu-Wei Huang(黄舒伟), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2024, 33(2): 028701.
[12] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[13] Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals
Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾). Chin. Phys. B, 2024, 33(1): 016301.
[14] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[15] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
No Suggested Reading articles found!