Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058701    DOI: 10.1088/1674-1056/ad334e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Cholesterol-induced deformation of the gramicidin A channel inhibiting potassium ion binding and transport

Pan Xiao(肖盼)1,2, Yu Cao(曹宇)1,2, Jin Zhu(朱瑾)1,2, and Qing Liang(梁清)1,2,†
1 Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China;
2 Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
Abstract  Gramicidin A (gA) is a kind of antibiotic peptide produced by bacillus brevis and it can dimerize across lipid bilayers to form a monovalent cation channel. In this work, we investigate the impact of cholesterol in the lipid bilayer on the binding of potassium ions with the gA channel and the transport of the ions across the channel. The results indicate that cholesterol can significantly influence the conformational stability of the gA channel and cause the channel deformation which inhibits the potassium ion binding with the channel and transport across the channel. The work provides some molecular insights into understanding of influence of lipids on the activity of gA channel in both model membranes and plasma membranes of intact cells.
Keywords:  gramicidin A      lipid bilayer      molecular dynamics      interaction  
Received:  04 February 2024      Revised:  26 February 2024      Accepted manuscript online:  13 March 2024
PACS:  87.14.ef (Peptides)  
  87.16.D- (Membranes, bilayers, and vesicles)  
  87.15.ap (Molecular dynamics simulation)  
  87.15.K- (Molecular interactions; membrane-protein interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674287) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19A040009).
Corresponding Authors:  Qing Liang     E-mail:  qliang@zjnu.edu.cn

Cite this article: 

Pan Xiao(肖盼), Yu Cao(曹宇), Jin Zhu(朱瑾), and Qing Liang(梁清) Cholesterol-induced deformation of the gramicidin A channel inhibiting potassium ion binding and transport 2024 Chin. Phys. B 33 058701

[1] Kelkar D A and Chattopadhyay A 2007 Biochim. Biophys. Acta Biomembr. 1768 2011
[2] Veatch W R, Fossel E T and Blout E R 1974 Biochemistry 13 5249
[3] Yang M, Liu S and Zhang C 2023 Curr. Res. Biotechnol. 5 100121
[4] Pavithrra G and Rajasekaran R 2020 Int. J. Pept. Res. Therap. 26 191
[5] Zerfas B L, Joo Y and Gao J 2016 ChemMedChem 11 629
[6] David J M and Rajasekaran A K 2015 J. Kidney. Cancer. VHL 2 15
[7] Moretta A, Scieuzo C, Petrone A M, Salvia R, Manniello M D, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A and Falabella P 2021 Front. Cell. Infect. Microbiol. 11 668632
[8] Haoyang W W, Xiao Q, Ye Z, Fu Y, Zhang D W, Li J, Xiao L, Li Z T and Hou J L 2021 Chem. Commun. 57 1097
[9] Xue Y W, Itoh H, Dan S and Inoue M 2022 Chem. Sci. 13 7482
[10] Chen T, Wang Y, Yang Y, Yu K, Cao X, Su F, Xu H, Peng Y, Hu Y, Qian F and Wang Z 2019 Biol. Res. 52 57
[11] Yan T, Zheng X, Liu S, Zou Y and Liu J 2022 Sci. China Chem. 65 1265
[12] Urry D 1971 Proc. Natl. Acad. Sci. USA 68 672
[13] LoGrasso P, Moll F and Cross T 1988 Biophys. J. 54 259
[14] Killian J A, Prasad K U, Hains D and Urry D W 1988 Biochemistry 27 4848
[15] Zheng S P, Huang L B, Sun Z and Barboiu M 2020 Angew. Chem. Int. Ed. 60 566
[16] Takada Y, Itoh H, Paudel A, Panthee S, Hamamoto H, Sekimizu K and Inoue M 2020 Nat. Commun. 11 4935
[17] Barboiu M, Le Duc Y, Gilles A, Cazade PA, Michau M, Marie Legrand Y, van der Lee A, Coasne B, Parvizi P, Post J and Fyles T 2014 Nat. Commun. 5 4142
[18] Kondrashov O V, Galimzyanov T R, Molotkovsky R J, Batishchev O V and Akimov S A 2020 Membranes 10 368
[19] Sun D, He S, Bennett W F D, Bilodeau C L, Andersen O S, Lightstone F C and Ingólfsson H I 2020 J. Chem. Theory Comput. 17 7
[20] Maer A M, Rusinova R, Providence L L, Ingólfsson H I, Collingwood S A, Lundbæk J A and Andersen O S 2022 Front. Physiol. 13 836789
[21] Kondrashov O V, Galimzyanov T R, Pavlov K V, Kotova E A, Antonenko Y N and Akimov S A 2018 Biophys. J. 115 478
[22] Yoo J and Cui Q 2013 Biophys. J. 104 128
[23] Foreman-Ortiz I U, Liang D, Laudadio E D, Calderin J D, Wu M, Keshri P, Zhang X, Schwartz M P, Hamers R J, Rotello V M, Murphy C J, Cui Q and Pedersen J A 2020 Proc. Natl. Acad. Sci. USA 117 27854
[24] Su Z, Goodall B, Leitch J J and Lipkowski J 2021 Electrochim. Acta 375 137892
[25] Novoderezhkin V I, Rokitskaya T I, Kotova E A and Antonenko Y N 2023 Phys. Chem. Chem. Phys. 25 3752
[26] Partenskii M B, Miloshevsky G V and Jordan P C 2003 J. Chem. Phys. 118 10306
[27] Goforth R L, Chi A K, Greathouse D V, Providence L L, Koeppe R E II and Andersen O S 2003 J. Gen. Physiol. 121 477
[28] Levitan I, Singh D K and Rosenhouse-Dantsker A 2014 Front. Physiol. 5 65
[29] Corradi V, Bukiya A N, Miranda W E, Cui M, Plant L D, Logothetis D E, Tieleman D P, Noskov S Y and Rosenhouse-Dantsker A 2022 Proc. Natl. Acad. Sci. USA 119 e2109431119
[30] Han S, Chu X P, Goodson R, Gamel P, Peng S, Vance J and Wang S Z 2022 Proc. Natl. Acad. Sci. USA 119 e2205420119
[31] Borcik C G, Eason I R, Yekefallah M, Amani R, Han R X, Vanderloop B H and Wylie B J 2022 Angew. Chem. Int. Ed. 61 e202112232
[32] Zakany F, Kovacs T, Panyi G and Varga Z 2020 Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865 158706
[33] Jin Y P, Liang Q and Tieleman D P 2020 J. Phys. Chem. B 124 3054
[34] Qin X X, Tieleman D P and Liang Q 2022 Biophys. J. 121 2069
[35] Schagina L V, Blasko K, Grinfeldt A E, Korchev Y E and Lev A A 1989 Biochim. Biophys. Acta Biomembr. 978 145
[36] Schagina L V, Korchev Y E, Grinfeldt A E, Lev A A and Blasto K 1992 Biochim. Biophys. Acta Biomembr. 1109 91
[37] Reiter R, Zaitseva E, Baaken G, Halimeh I, Behrends J C and Zumbuehl A 2019 Langmuir 35 14959
[38] Patrick J W, Gamez R C and Russell D H 2016 Biophys. J. 110 1826
[39] Lee J, Cheng X, Swails J M, Yeom M S, Eastman P K, Lemkul J A, Wei S, Buckner J, Jeong J C, Qi Y, Jo S, Pande V S, Case D A, Brooks III C L, Mackerell Jr. A D, Klauda J B and Im W 2016 J. Chem. Theory Comput. 12 405
[40] Jo S, Klauda J B and Im W 2009 Biophys. J. 97 50
[41] Jo S, Kim T, Iyer V G and Im W 2008 J. Comput. Chem. 29 1859
[42] Klauda J B, Venable R M, Freites J A, O’Connor J W, Tobias D J, Mondragon-Ramirez C, Vorobyov I, MacKerell A D and Pastor R W 2010 J. Phys. Chem. B 114 7830
[43] Huang J and MacKerell A D 2013 J. Comput. Chem. 34 2135
[44] Pastor R W and MacKerell A D 2011 J. Phys. Chem. Lett. 2 1526
[45] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C 2005 J. Comput. Chem. 26 1701
[46] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1 19
[47] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[48] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[49] Hub J S, de Groot B L and van der Spoel D 2010 J. Chem. Theory Comput. 6 3713
[50] Kumar S, Rosenberg J M, Bouzida D, Swendsen R H and Kollman P A 1992 J. Comput. Chem. 13 1011
[51] Zhu F Q and Hummer G 2012 J. Comput. Chem. 33 453
[52] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[53] Michaud-Agrawal N, Denning E J, Woolf T B and Beckstein O 2011 J. Comput. Chem. 32 2319
[54] Olah G A, Huang H W, Liu W H and Wu Y L 1991 J. Mol. Biol. 218 847
[55] Sham S S, Shobana S, Townsley L E, Jordan J B, Fernandez J Q, Andersen O S, Greathouse D V and Hinton J F 2003 Biochemistry 42 1401
[56] Miloshevsky G V and Jordan P C 2006 Structure 14 1241
[57] Huang Z and London E 2016 Chem. Phys. Lipids 199 11
[1] Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in LWFA
Guang-Wei Lu(卢光伟), Yao-Jun Li(李曜均), Xi-Chen Hu(胡曦辰), Si-Yu Chen(陈思宇), Hao Xu(徐豪), Ming-Yang Zhu(祝铭阳), Wen-Chao Yan(闫文超), and Li-Ming Chen(陈黎明). Chin. Phys. B, 2024, 33(6): 064101.
[2] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[3] Spectroscopy and molecule opacity investigation on excited states of SiS
Rui Li(李瑞), Haonan Lv(吕浩男), Jiqun Sang(桑纪群), Xiaohua Liu(刘晓华), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2024, 33(5): 053101.
[4] Superradiance of ultracold cesium Rydberg |65D5/2> → |66P3/2>
Liping Hao(郝丽萍), Xiaoxuan Han(韩小萱), Suying Bai(白素英), Xiufen You(游秀芬), Yuechun Jiao(焦月春), and Jianming Zhao(赵建明). Chin. Phys. B, 2024, 33(5): 054204.
[5] Model of self-generated magnetic field generation from relativistic laser interaction with solid targets
Rui Yan(严睿), De-Bin Zou(邹德滨), Na Zhao(赵娜), Xiao-Hu Yang(杨晓虎), Xiang-Rui Jiang(蒋祥瑞), Li-Xiang Hu(胡理想), Xin-Rong Xu(徐新荣), Hong-Yu Zhou(周泓宇), Tong-Pu Yu(余同普), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), and Yan Yin(银燕). Chin. Phys. B, 2024, 33(5): 055203.
[6] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[7] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[8] Actively tuning anisotropic light—matter interaction in biaxial hyperbolic material α-MoO3 using phase change material VO2 and graphene
Kun Zhou(周昆), Yang Hu(胡杨), Biyuan Wu(吴必园), Xiaoxing Zhong(仲晓星), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2024, 33(4): 047103.
[9] Dynamic modeling of cavitation bubble clusters: Effects of evaporation, condensation, and bubble—bubble interaction
Long Xu(许龙), Xin-Rui Yao(姚昕锐), and Yang Shen(沈阳). Chin. Phys. B, 2024, 33(4): 044702.
[10] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[11] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[12] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[13] Coherence of nonlinear Bloch dynamics of Bose—Einstein condensates in deep optical lattices
Ai-Xia Zhang(张爱霞), Wei Zhang(张薇), Jie Wang(王杰), Xiao-Wen Hu(胡潇文), Lai-Lai Mi(米来来), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2024, 33(4): 040305.
[14] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[15] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
No Suggested Reading articles found!