Special Issue:
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
|
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems |
Yi Li(李毅)†, Yinong Liu(刘一浓)†, and Shiqian Hu(胡世谦)‡ |
School of Physics and Astronomy, Yunnan University, Kunming 650091, China |
|
|
Abstract The drive for efficient thermal management has intensified with the miniaturization of electronic devices. This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces. Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength, leading to a noteworthy reduction in thermal conductivity. Furthermore, we observe a distinct attenuation in length-dependent behavior within the graphene—nanoparticles system. Our exploration combines wave packet simulations with phonon transmission calculations, aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play. Lastly, we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene, revealing an enhanced thermal boundary conductance. This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance, offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications.
|
Received: 19 November 2023
Revised: 03 December 2023
Accepted manuscript online: 13 December 2023
|
PACS:
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
43.20.Ks
|
(Standing waves, resonance, normal modes)
|
|
65.80.Ck
|
(Thermal properties of graphene)
|
|
Fund: This research was funded in parts by the National Natural Science Foundation of China (Grant No. 12105242) and Yunnan Fundamental Research Project (Grant Nos. 202201AT070161 and 202301AW070006). Y. Li, Y. Liu and S. Hu acknowledge support from the Graduate Scientific Research and Innovation Fund of Yunnan University (Grant No. KC-22221060). |
Corresponding Authors:
Shiqian Hu
E-mail: shiqian@ynu.edu.cn
|
Cite this article:
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦) Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems 2024 Chin. Phys. B 33 047401
|
[1] Jiang J, Zhang L, Ming C, et al. 2022 Nature 607 480 [2] LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N and Henry A 2022 Nature 604 287 [3] Liu W, Liu Y, Yang Z, et al. 2023 Nature 617 717 [4] Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A and Ruan X 2021 Nat. Commun. 12 4915 [5] Qian X, Zhou J and Chen G 2021 Nat. Mater. 20 1188 [6] Han S, Dai S, Ma J, Ren Q, Hu C, Gao Z, Duc Le M, Sheptyakov D, Miao P, Torii S, Kamiyama T, Felser C, Yang J, Fu C and Zhu T 2023 Nat. Phys. 19 1649 [7] Britt T L and Siwick B J 2023 Phys. Rev. B 107 214306 [8] Han Z and Ruan X 2023 Phys. Rev. B 108 121412 [9] Ma D, Arora A, Deng S, Xie G, Shiomi J and Yang N 2019 Mater. Today Phys. 8 56 [10] Feng L, Shiga T, Han H, Ju S, Kosevich Y A and Shiomi J 2017 Phys. Rev. B 96 220301 [11] Giri A and Hopkins P E 2018 Phys. Rev. B 98 045421 [12] Ding X and Ming Y 2014 Chin. Phys. Lett. 31 046601 [13] Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y, Hanus R, Snyder G J and Pei Y 2017 Nat. Commun. 8 13828 [14] Asfandiyar, Cai B, Zhuang H L, Tang H and Li J F 2020 Nano Energy 69 104393 [15] Liu Y, Yue J, Liu Y, Nian L L and Hu S 2023 Chin. Phys. Lett. 40 086301 [16] Davis B L and Hussein M I 2014 Phys. Rev. Lett. 112 055505 [17] Honarvar H and Hussein M I 2016 Phys. Rev. B 93 081412 [18] Ma D, Wan X and Yang N 2018 Phys. Rev. B 98 245420 [19] Zhang H, Sun B, Hu S, Wang H, Cheng Y, Xiong S, Volz S and Ni Y 2020 Phys. Rev. B 101 205418 [20] Wang H, Cheng Y, Fan Z, Guo Y, Zhang Z, Bescond M, Nomura M, Ala-Nissila T, Volz S and Xiong S 2021 Nanoscale 13 10010 [21] Li K, Cheng Y, Wang H, Guo Y, Zhang Z, Bescond M, Nomura M, Volz S, Zhang X and Xiong S 2022 Int. J. Heat Mass Transf. 183 122144 [22] Honarvar H and Hussein M I 2018 Phys. Rev. B 97 195413 [23] Liu H, Li W, Cao Z, Huang X and Ni Y 2023 Int. J. Heat Mass Transf. 205 123903 [24] Xiong S, Sääskilahti K, Kosevich Y A, Han H, Donadio D and Volz S 2016 Phys. Rev. Lett. 117 025503 [25] Zhang S, Liu Y, Sun Z, Chen X, Li B, Moore S L, Liu S, Wang Z, Rossi S E, Jing R, Fonseca J, Yang B, Shao Y, Huang C, Handa T, Xiong L, Fu M, Pan T, Halbertal D, Xu X, et al. 2023 Nat. Commun. 14 6200 [26] Song Q, Occhialini C A, Ergeçen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N and Comin R 2022 Nature 602 601 [27] Lee W, Fernandez-Mulligan S, Tan H, Yan C, Guan Y, Lee S H, Mei R, Liu C, Yan B, Mao Z and Yang S 2023 Nat. Phys. 19 950 [28] Kim S E, Mujid F, Rai A, Eriksson F, Suh J, Poddar P, Ray A, Park C, Fransson E, Zhong Y, Muller D A, Erhart P, Cahill D G and Park J 2021 Nature 597 660 [29] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441 [30] Tersoff J 1988 Phys. Rev. B 37 6991 [31] Johnson J K, Zollweg J A and Gubbins K E 2006 Mol. Phys. 78 591 [32] Rappe A K, Casewit C J, Colwell K S, Goddard III W A and Skiff W M 1992 J. Am. Chem. Soc. 114 10024 [33] Liang T, Zhang P, Yuan P and Zhai S 2018 Phys. Chem. Chem. Phys. 20 21151 [34] Liang T, Zhou M, Zhang P, Yuan P and Yang D 2020 Int. J. Heat Mass Transf. 151 119395 [35] Plimpton S 1995 J. Comput. Phys. 117 1 [36] Chang C W, Okawa D, Garcia H, Majumdar A and Zettl A 2008 Phys. Rev. Lett. 101 075903 [37] Yang N, Zhang G and Li B 2010 Nano Today 5 85 [38] Lee V, Wu C H, Lou Z X, Lee W L and Chang C W 2017 Phys. Rev. Lett. 118 135901 [39] Hoover W G 1985 Phys. Rev. A 31 1695 [40] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042 [41] Sääskilahti K, Oksanen J, Volz S and Tulkki J 2015 Phys. Rev. B 91 115426 [42] Sääskilahti K, Oksanen J, Tulkki J and Volz S 2016 Phys. Rev. E 93 052141 [43] Lindsay L, Broido D A and Mingo N 2010 Phys. Rev. B 82 115427 [44] Hu M, Keblinski P and Schelling P K 2009 Phys. Rev. B 79 104305 [45] Wei X and Luo T 2019 J. Appl. Phys. 126 015301 [46] Wu M, Shi R, Qi R, Li Y, Feng T, Liu B, Yan J, Li X, Liu Z, Wang T, Wei T, Liu Z, Du J, Chen J and Gao P 2023 Chin. Phys. Lett. 40 036801 [47] Lu Z, Smith N P, Prange M P, Bunker R A, Orrell J L and Chaka A M 2021 Phys. Rev. Mater. 5 086002 [48] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M and Li B 2018 J. Phys. Chem. Lett. 9 3959 [49] Liu Y, Ren W, An M, Dong L, Gao L, Shai X, Wei T, Nie L, Hu S and Zeng C 2022 Front. Mater. 9 913764 [50] Ni Y, Zhang H, Hu S, Wang H, Volz S and Xiong S 2019 Int. J. Heat Mass Transf. 144 118608 [51] Roy Chowdhury P, Reynolds C, Garrett A, Feng T, Adiga S P and Ruan X 2020 Nano Energy 69 104428 [52] Sun L, Zhai F, Cao Z, Huang X, Guo C, Wang H and Ni Y 2023 Chin. Phys. B 32 056301 [53] Savić I, Mingo N and Stewart D A 2008 Phys. Rev. Lett. 101 165502 [54] Mendoza J and Chen G 2016 Nano Lett. 16 7616 [55] Juntunen T, Vänskä O and Tittonen I 2019 Phys. Rev. Lett. 122 105901 [56] Nagelkerk E N J D 1991 Biometrika 78 691 [57] Zhang Z, Guo Y, Bescond M, Chen J, Nomura M and Volz S 2021 APL Mater. 9 081102 [58] Guo Y, Bescond M, Zhang Z, Xiong S, Hirakawa K, Nomura M and Volz S 2021 APL Mater. 9 091104 [59] Ong Z Y and Pop E 2010 Phys. Rev. B 81 155408 [60] Wu S, Wang J, Xie H and Guo Z 2020 Energies 13 5851 [61] Rajabpour A, Seif R, Arabha S, Heyhat M M, Merabia S and Hassanali A 2019 J. Chem. Phys. 150 114701 [62] Ma H, Babaei H and Tian Z 2019 Carbon 148 196 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|