Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047401    DOI: 10.1088/1674-1056/ad1501
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems

Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦)
School of Physics and Astronomy, Yunnan University, Kunming 650091, China
Abstract  The drive for efficient thermal management has intensified with the miniaturization of electronic devices. This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces. Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength, leading to a noteworthy reduction in thermal conductivity. Furthermore, we observe a distinct attenuation in length-dependent behavior within the graphene—nanoparticles system. Our exploration combines wave packet simulations with phonon transmission calculations, aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play. Lastly, we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene, revealing an enhanced thermal boundary conductance. This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance, offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications.
Keywords:  thermal conductivity      molecular dynamics      phonon resonance      van der Waals interaction      graphene—silicon nanoparticle heterostructure  
Received:  19 November 2023      Revised:  03 December 2023      Accepted manuscript online:  13 December 2023
PACS:  74.25.fc (Electric and thermal conductivity)  
  43.20.Ks (Standing waves, resonance, normal modes)  
  65.80.Ck (Thermal properties of graphene)  
Fund: This research was funded in parts by the National Natural Science Foundation of China (Grant No. 12105242) and Yunnan Fundamental Research Project (Grant Nos. 202201AT070161 and 202301AW070006). Y. Li, Y. Liu and S. Hu acknowledge support from the Graduate Scientific Research and Innovation Fund of Yunnan University (Grant No. KC-22221060).
Corresponding Authors:  Shiqian Hu     E-mail:  shiqian@ynu.edu.cn

Cite this article: 

Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦) Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems 2024 Chin. Phys. B 33 047401

[1] Jiang J, Zhang L, Ming C, et al. 2022 Nature 607 480
[2] LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N and Henry A 2022 Nature 604 287
[3] Liu W, Liu Y, Yang Z, et al. 2023 Nature 617 717
[4] Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A and Ruan X 2021 Nat. Commun. 12 4915
[5] Qian X, Zhou J and Chen G 2021 Nat. Mater. 20 1188
[6] Han S, Dai S, Ma J, Ren Q, Hu C, Gao Z, Duc Le M, Sheptyakov D, Miao P, Torii S, Kamiyama T, Felser C, Yang J, Fu C and Zhu T 2023 Nat. Phys. 19 1649
[7] Britt T L and Siwick B J 2023 Phys. Rev. B 107 214306
[8] Han Z and Ruan X 2023 Phys. Rev. B 108 121412
[9] Ma D, Arora A, Deng S, Xie G, Shiomi J and Yang N 2019 Mater. Today Phys. 8 56
[10] Feng L, Shiga T, Han H, Ju S, Kosevich Y A and Shiomi J 2017 Phys. Rev. B 96 220301
[11] Giri A and Hopkins P E 2018 Phys. Rev. B 98 045421
[12] Ding X and Ming Y 2014 Chin. Phys. Lett. 31 046601
[13] Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y, Hanus R, Snyder G J and Pei Y 2017 Nat. Commun. 8 13828
[14] Asfandiyar, Cai B, Zhuang H L, Tang H and Li J F 2020 Nano Energy 69 104393
[15] Liu Y, Yue J, Liu Y, Nian L L and Hu S 2023 Chin. Phys. Lett. 40 086301
[16] Davis B L and Hussein M I 2014 Phys. Rev. Lett. 112 055505
[17] Honarvar H and Hussein M I 2016 Phys. Rev. B 93 081412
[18] Ma D, Wan X and Yang N 2018 Phys. Rev. B 98 245420
[19] Zhang H, Sun B, Hu S, Wang H, Cheng Y, Xiong S, Volz S and Ni Y 2020 Phys. Rev. B 101 205418
[20] Wang H, Cheng Y, Fan Z, Guo Y, Zhang Z, Bescond M, Nomura M, Ala-Nissila T, Volz S and Xiong S 2021 Nanoscale 13 10010
[21] Li K, Cheng Y, Wang H, Guo Y, Zhang Z, Bescond M, Nomura M, Volz S, Zhang X and Xiong S 2022 Int. J. Heat Mass Transf. 183 122144
[22] Honarvar H and Hussein M I 2018 Phys. Rev. B 97 195413
[23] Liu H, Li W, Cao Z, Huang X and Ni Y 2023 Int. J. Heat Mass Transf. 205 123903
[24] Xiong S, Sääskilahti K, Kosevich Y A, Han H, Donadio D and Volz S 2016 Phys. Rev. Lett. 117 025503
[25] Zhang S, Liu Y, Sun Z, Chen X, Li B, Moore S L, Liu S, Wang Z, Rossi S E, Jing R, Fonseca J, Yang B, Shao Y, Huang C, Handa T, Xiong L, Fu M, Pan T, Halbertal D, Xu X, et al. 2023 Nat. Commun. 14 6200
[26] Song Q, Occhialini C A, Ergeçen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N and Comin R 2022 Nature 602 601
[27] Lee W, Fernandez-Mulligan S, Tan H, Yan C, Guan Y, Lee S H, Mei R, Liu C, Yan B, Mao Z and Yang S 2023 Nat. Phys. 19 950
[28] Kim S E, Mujid F, Rai A, Eriksson F, Suh J, Poddar P, Ray A, Park C, Fransson E, Zhong Y, Muller D A, Erhart P, Cahill D G and Park J 2021 Nature 597 660
[29] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441
[30] Tersoff J 1988 Phys. Rev. B 37 6991
[31] Johnson J K, Zollweg J A and Gubbins K E 2006 Mol. Phys. 78 591
[32] Rappe A K, Casewit C J, Colwell K S, Goddard III W A and Skiff W M 1992 J. Am. Chem. Soc. 114 10024
[33] Liang T, Zhang P, Yuan P and Zhai S 2018 Phys. Chem. Chem. Phys. 20 21151
[34] Liang T, Zhou M, Zhang P, Yuan P and Yang D 2020 Int. J. Heat Mass Transf. 151 119395
[35] Plimpton S 1995 J. Comput. Phys. 117 1
[36] Chang C W, Okawa D, Garcia H, Majumdar A and Zettl A 2008 Phys. Rev. Lett. 101 075903
[37] Yang N, Zhang G and Li B 2010 Nano Today 5 85
[38] Lee V, Wu C H, Lou Z X, Lee W L and Chang C W 2017 Phys. Rev. Lett. 118 135901
[39] Hoover W G 1985 Phys. Rev. A 31 1695
[40] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042
[41] Sääskilahti K, Oksanen J, Volz S and Tulkki J 2015 Phys. Rev. B 91 115426
[42] Sääskilahti K, Oksanen J, Tulkki J and Volz S 2016 Phys. Rev. E 93 052141
[43] Lindsay L, Broido D A and Mingo N 2010 Phys. Rev. B 82 115427
[44] Hu M, Keblinski P and Schelling P K 2009 Phys. Rev. B 79 104305
[45] Wei X and Luo T 2019 J. Appl. Phys. 126 015301
[46] Wu M, Shi R, Qi R, Li Y, Feng T, Liu B, Yan J, Li X, Liu Z, Wang T, Wei T, Liu Z, Du J, Chen J and Gao P 2023 Chin. Phys. Lett. 40 036801
[47] Lu Z, Smith N P, Prange M P, Bunker R A, Orrell J L and Chaka A M 2021 Phys. Rev. Mater. 5 086002
[48] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M and Li B 2018 J. Phys. Chem. Lett. 9 3959
[49] Liu Y, Ren W, An M, Dong L, Gao L, Shai X, Wei T, Nie L, Hu S and Zeng C 2022 Front. Mater. 9 913764
[50] Ni Y, Zhang H, Hu S, Wang H, Volz S and Xiong S 2019 Int. J. Heat Mass Transf. 144 118608
[51] Roy Chowdhury P, Reynolds C, Garrett A, Feng T, Adiga S P and Ruan X 2020 Nano Energy 69 104428
[52] Sun L, Zhai F, Cao Z, Huang X, Guo C, Wang H and Ni Y 2023 Chin. Phys. B 32 056301
[53] Savić I, Mingo N and Stewart D A 2008 Phys. Rev. Lett. 101 165502
[54] Mendoza J and Chen G 2016 Nano Lett. 16 7616
[55] Juntunen T, Vänskä O and Tittonen I 2019 Phys. Rev. Lett. 122 105901
[56] Nagelkerk E N J D 1991 Biometrika 78 691
[57] Zhang Z, Guo Y, Bescond M, Chen J, Nomura M and Volz S 2021 APL Mater. 9 081102
[58] Guo Y, Bescond M, Zhang Z, Xiong S, Hirakawa K, Nomura M and Volz S 2021 APL Mater. 9 091104
[59] Ong Z Y and Pop E 2010 Phys. Rev. B 81 155408
[60] Wu S, Wang J, Xie H and Guo Z 2020 Energies 13 5851
[61] Rajabpour A, Seif R, Arabha S, Heyhat M M, Merabia S and Hassanali A 2019 J. Chem. Phys. 150 114701
[62] Ma H, Babaei H and Tian Z 2019 Carbon 148 196
[1] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[2] Superradiance of ultracold cesium Rydberg |65D5/2> → |66P3/2>
Liping Hao(郝丽萍), Xiaoxuan Han(韩小萱), Suying Bai(白素英), Xiufen You(游秀芬), Yuechun Jiao(焦月春), and Jianming Zhao(赵建明). Chin. Phys. B, 2024, 33(5): 054204.
[3] Cholesterol-induced deformation of the gramicidin A channel inhibiting potassium ion binding and transport
Pan Xiao(肖盼), Yu Cao(曹宇), Jin Zhu(朱瑾), and Qing Liang(梁清). Chin. Phys. B, 2024, 33(5): 058701.
[4] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[5] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[6] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[7] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[8] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[9] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[10] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[11] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[12] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[13] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[14] Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer
Yao Xu(徐耀), Shu-Wei Huang(黄舒伟), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2024, 33(2): 028701.
[15] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
No Suggested Reading articles found!