CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Flexible electrically pumped random lasing from ZnO nanowires based on metal-insulator-semiconductor structure |
Miao-Ling Que(阙妙玲), Xian-Di Wang(王贤迪), Yi-Yao Peng(彭轶瑶), Cao-Feng Pan(潘曹峰) |
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology(NCNST), Beijing 100083, China |
|
|
Abstract Flexible electrically pumped random laser (RL) based on ZnO nanowires is demonstrated for the first time to our knowledge. The ZnO nanowires each with a length of 5 μm and an average diameter of 180 nm are synthesized on flexible substrate (ITO/PET) by a simple hydrothermal method. No obvious visible defect-related-emission band is observed in the photoluminescence (PL) spectrum, indicating that the ZnO nanowires grown on the flexible ITO/PET substrate have few defects. In order to achieve electrically pumped random lasing with a lower threshold, the metal-insulator-semiconductor (MIS) structure of Au/SiO2/ZnO on ITO/PET substrate is fabricated by low temperature process. With sufficient forward bias, the as-fabricated flexible device exhibits random lasing, and a low threshold current of ~11.5 mA and high luminous intensity are obtained from the ZnO-based random laser. It is believed that this work offers a case study for developing the flexible electrically pumped random lasing from ZnO nanowires.
|
Received: 07 April 2017
Revised: 10 April 2017
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.Uh
|
(Nanowires)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
Corresponding Authors:
Cao-Feng Pan
E-mail: cfpan@binn.cas.cn
|
Cite this article:
Miao-Ling Que(阙妙玲), Xian-Di Wang(王贤迪), Yi-Yao Peng(彭轶瑶), Cao-Feng Pan(潘曹峰) Flexible electrically pumped random lasing from ZnO nanowires based on metal-insulator-semiconductor structure 2017 Chin. Phys. B 26 067301
|
[1] |
Li X Y, Chen M X, Yu R M, Zhang T P, Song D S, Liang R R, Zhang Q L, Cheng S B, Dong L, Pan A L, Wang Z L, Zhu J and Pan C F 2015 Adv. Mater. 27 4447
|
[2] |
Zhang T P, Liang R R, Dong L, Wang J, Xu J and Pan C F 2015 Nano Research 8 2676
|
[3] |
Xu S, Xu C, Liu Y, Hu Y F, Yang R S, Yang Q, Ryou J H, Kim H J, Lochner Z, Choi S, Dupuis R and Wang Z L 2010 Adv. Mater. 22 4749
|
[4] |
Yang Q, Wang W H, Xu S and Wang Z L 2011 Nano Lett. 11 4012
|
[5] |
Pan C F, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y and Wang Z L 2013 Nat. Photon. 7 752
|
[6] |
Tian Y, Ma X, Jin L and Yang D 2010 Appl. Phys. Lett. 97 251115
|
[7] |
Gao F, Morshed M M, Bashar S B, Zheng Y, Shi Y and Liu J 2015 Nanoscale 7 9505
|
[8] |
Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhang Z Z, Zhao D X, Shen D Z, Fan X W, Lu Y M and Tang Z K 2009 Adv. Mater. 21 1613
|
[9] |
Dai J, Xu C X and Sun X W 2011 Adv. Mater. 23 4115
|
[10] |
Chu S, Wang G P, Zhou W H, Lin Y Q, Chernyak L, Zhao J Z, Kong J Y, Li L, Ren J J and Liu J L 2011 Nat. Nanotechnol. 6 506
|
[11] |
Cao H, Zhao Y G, Ho S T, Seelig E W, Wang Q H and Chang R P H 1999 Phys. Rev. Lett. 82 2278
|
[12] |
Miao L, Tanemura S, Yang H Y, Lau S P and Xu G 2009 Phys. Status Solidi 6 S154
|
[13] |
Cao H, Zhao Y G, Ong H C, Ho S T, Dai J Y, Wu J Y and Chang R P H 1998 Appl. Phys. Lett. 73 3656
|
[14] |
Vutha A C, Tiwari S K and Thareja R K 2006 J. Appl. Phys. 99 123509
|
[15] |
Li H D, Yu S F, Lau S P and Leong E S P 2006 Appl. Phys. Lett. 89 021110
|
[16] |
Chu S, Olmedo M, Yang Z, Kong J and Liu J 2008 Appl. Phys. Lett. 93 181106
|
[17] |
Li Y, Wang C, Jin L, Ma X and Yang D 2013 Appl. Phys. Lett. 102 161112
|
[18] |
Ma X Y, Pan J W, Chen P L, Li D S, Zhang H, Yang Y and Yang D R 2009 Opt. Express 17 14426
|
[19] |
Yang H Y, Yu S F, Wong J I, Cen Z H, Liang H K and Chen T P 2011 ACS Appl. Mater. Interfaces 3 1726
|
[20] |
Wang C, Nieh C, Lin T and Chen Y 2015 Adv. Funct. Mater. 25 4058
|
[21] |
Lu Y, Shan C, Jiang M, Hu G, Zhang N, Wang S, Li B and Shen D 2015 Cryst. Eng. Comm. 17 3917
|
[22] |
Tian Y, Ma X Y, Chen P L, Zhang Y Y and Yang D R 2010 Opt. Express 18 10668
|
[23] |
Zhang Y, Yang Y and Wang Z L 2012 Energy Environ. Sci. 5 6850
|
[24] |
Wang X D, Que M L, Chen M X, Han X, Li X Y, Pan C F and Wang Z L Adv. Mater.
|
[25] |
Que M L, Zhou R R, Wang X D, Yuan Z Q, Hu G F and Pan C F 2016 J. Phys.: Condens. Matter 28 433001
|
[26] |
Boxberg F, Sondergaard N and Xu H Q 2010 Nano Lett. 10 1108
|
[27] |
Bao R R, Wang C F, Dong L, Yu R M, Zhao K, Wang Z L and Pan C F 2015 Adv. Funct. Mater. 25 2884
|
[28] |
Wang Z L 2012 Adv. Mater. 24 4632
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|