CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction |
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良)†, and Shuai Qiu(邱帅)‡ |
Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
|
|
Abstract Orientation-dependent transport properties induced by anisotropic molecules are enticing in single-molecule junctions. Here, using the first-principles method, we theoretically investigate spin transport properties and photoresponse characteristics in trimesic acid magnetic single-molecule junctions with different molecular adsorption orientations and electrode contact sites. The transport calculations indicate that a single-molecule switch and a significant enhancement of spin transport and photoresponse can be achieved when the molecular adsorption orientation changes from planar geometry to upright geometry. The maximum spin polarization of current and photocurrent in upright molecular junctions exceeds 90%. Moreover, as the Ni tip electrode moves, the tunneling magnetoresistance of upright molecular junctions can be increased to 70%. The analysis of the spin-dependent PDOS elucidates that the spinterfaces between organic molecule and ferromagnetic electrodes are modulated by molecular adsorption orientation, where the molecule in upright molecular junctions yields higher spin polarization. Our theoretical work paves the way for designing spintronic devices and optoelectronic devices with anisotropic functionality base on anisotropic molecules.
|
Received: 12 October 2023
Revised: 01 January 2024
Accepted manuscript online: 15 January 2024
|
PACS:
|
72.25.-b
|
(Spin polarized transport)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974217, 12204281, and 21933002) and the Shandong Provincial Natural Science Foundation (Grant No. ZR2022QA068). |
Corresponding Authors:
Zong-Liang Li, Shuai Qiu
E-mail: lizongliang@sdnu.edu.cn;shuaiqiu@sdnu.edu.cn
|
Cite this article:
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅) Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction 2024 Chin. Phys. B 33 047201
|
[1] Naber W J M, Faez S and Wiel W G V D 2007 J. Phys. D:Appl. Phys. 40 R205 [2] Lv X R, Liang S H, Tao L L and Han X F 2014 Spin 4 1440013 [3] Sanvito S 2011 Chem. Soc. Rev. 40 3336 [4] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P and Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711 [5] Guo L, Qin Y, Gu X, Zhu X, Zhou Q and Sun X 2019 Front. Chem. 7 428 [6] Miao Y, Qiu S, Zhang G, Ren J, Wang C and Hu G 2018 Phys. Rev. B 98 235415 [7] Rocha A R, García-Suárez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S 2005 Nat. Mater. 4 335 [8] Sun D, Ehrenfreund E and Vardeny Z V 2014 Chem. Commun. 50 1781 [9] Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F and Fert A 2010 Nat. Phys. 6 615 [10] Cinchetti M, Dediu V A and Hueso L E 2017 Nat. Mater. 16 507 [11] Raman K V, Kamerbeek A M, Mukherjee A, Atodiresei N, Sen T K, Lazić P, Caciuc V, Michel R, Stalke D, Mandal S K, Blügel S, Münzenberg M and Moodera J S 2013 Nature 493 509 [12] Sanvito S 2010 Nat. Phys. 6 562 [13] Galbiati M, Tatay S, Barraud C, Dediu A V, Petroff F, Mattana R and Seneor P 2014 MRS Bull. 39 602 [14] Liang S H, Liu D P, Tao L L, Han X F and Guo H 2012 Phys. Rev. B 86 224419 [15] Sun M and Mi W 2018 J. Mater. Chem. C 6 6619 [16] Gao F, Li D, Barreteau C and Brandbyge M 2022 Phys. Rev. Lett. 129 027201 [17] Lach S, Altenhof A, Tarafder K, Schmitt F, Ali M E, Vogel M, Sauther J, Oppeneer P M and Ziegler C 2012 Adv. Funct. Mater. 22 989 [18] Shi S, Sun Z, Bedoya-Pinto A, Graziosi P, Li X, Liu X, Hueso L, Dediu V A, Luo Y and Fahlman M 2014 Adv. Funct. Mater. 24 4812 [19] Guo L, Gu X, Zhu X and Sun X 2019 Adv. Mater. 31 1805355 [20] Delprat S, Galbiati M, Tatay S, Quinard B, Barraud C, Petroff F, Seneor P and Mattana R 2018 J. Phys. D:Appl. Phys. 51 473001 [21] Kawahara S L, Lagoute J, Repain V, Chacon C, Girard Y, Rousset S, Smogunov A and Barreteau C 2012 Nano Lett. 12 4558 [22] Dalgleish H and Kirczenow G 2006 Phys. Rev. B 73 245431 [23] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2020 J. Phys. Chem. C 124 12144 [24] Zhang N, Lo W Y, Cai Z, Li L and Yu L 2017 Nano Lett. 17 308 [25] Zhang G P, Mu Y Q, Wei M Z, Wang S, Huang H, Hu G C, Li Z L and Wang C K 2018 J. Mater. Chem. C 6 2105 [26] Tao L L and Wang J 2017 Nanoscale 9 12684 [27] Li D, Banerjee R, Mondal S, Maliyov I, Romanova M, Dappe Y J and Smogunov A 2019 Phys. Rev. B 99 115403 [28] Goren N, Das T K, Brown N, Gilead S, Yochelis S, Gazit E, Naaman R and Paltiel Y 2021 Nano Lett. 21 8657 [29] Cardona-Serra S, Gaita-Ariño A, Stamenova M and Sanvito S 2017 J. Phys. Chem. Lett. 8 3056 [30] Zhang X, Tong J, Zhu H, Wang Z, Zhou L, Wang S, Miyashita T, Mitsuishi M and Qin G 2017 J. Mater. Chem. C 5 5055 [31] Yao X, Duan Q, Tong J, Chang Y, Zhou L, Qin G and Zhang X 2018 Materials 11 721 [32] Vezzoli A, Brooke R J, Higgins S J, Schwarzacher W and Nichols R J 2017 Nano Lett. 17 6702 [33] Han X, Mi W and Wang X 2019 J. Mater. Chem. C 7 4079 [34] Zhou Y, Yu S and Zheng X 2020 Carbon 170 361 [35] Chen J, Zhang L, Zhang L, Zheng X, Xiao L, Jia S and Wang J 2018 Phys. Chem. Chem. Phys. 20 26744 [36] Michnowicz T, Borca B, Pétuya R, Schendel V, Pristl M, Pentegov I, Kraft U, Klauk H, Wahl P, Mutombo P, Jelínek P, Arnau A, Schlickum U and Kern K 2020 Angew. Chem. Int. Ed. 59 6207 [37] Herrer I L, Ismael A K, Milán D C, Vezzoli A, Martín S, González-Orive A, Grace I, Lambert C, Serrano J L, Nichols R J and Cea P 2018 J. Phys. Chem. Lett. 9 5364 [38] Wang Y H, Zhou X Y, Sun Y Y, Han D, Zheng J F, Niu Z J and Zhou X S 2014 Electrochim. Acta 123 205 [39] Li X M, Wang Y H, Seng J W, Zheng J F, Cao R, Shao Y, Chen J Z, Li J F, Zhou X S and Mao B W 2021 ACS Appl. Mater. Interfaces 13 8656 [40] Zhu Z, Qu H, Chen Y, Zhang C, Li R, Zhao Y, Zhou Y, Chen Z, Liu J, Xiao Z and Hong W 2021 J. Mater. Chem. C 9 16192 [41] Gao T, Pan Z, Cai Z, Zheng J, Tang C, Yuan S, Zhao S, Bai H, Yang Y, Shi J, Xiao Z, Liu J and Hong W 2021 Chem. Commun. 57 7160 [42] Yasini P, Afsari S, Peng H, Pikma P, Perdew J P and Borguet E 2019 J. Am. Chem. Soc. 141 10109 [43] Pal A N, Li D, Sarkar S, Chakrabarti S, Vilan A, Kronik L, Smogunov A and Tal O 2019 Nat. Commun. 10 5565 [44] Afsari S, Yasini P, Peng H, Perdew J P and Borguet E 2019 Angew. Chem. Int. Ed. 58 14275 [45] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.:Condens. Matter 14 2745 [46] Atomistix ToolKit version2018.06, Synopsys QuantumWise A/S (www.quantumwise.com). [47] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [48] Troullier N and Martins J 1990 Solid State Commun. 74 613 [49] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 77 3865 [50] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207 [51] Chen J, Hu Y and Guo H 2012 Phys. Rev. B 85 155441 [52] Henrickson L E 2002 J. Appl. Phys. 91 6273 [53] Zhang L, Gong K, Chen J, Liu L, Zhu Y, Xiao D and Guo H 2014 Phys. Rev. B 90 195428 [54] Afsari S, Li Z and Borguet E 2014 Angew. Chem. Int. Ed. 53 9771 [55] Larade B, Taylor J, Zheng Q R, Mehrez H, Pomorski P and Guo H 2001 Phys. Rev. B 64 195402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|