Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047201    DOI: 10.1088/1674-1056/ad1e65
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction

Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅)
Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  Orientation-dependent transport properties induced by anisotropic molecules are enticing in single-molecule junctions. Here, using the first-principles method, we theoretically investigate spin transport properties and photoresponse characteristics in trimesic acid magnetic single-molecule junctions with different molecular adsorption orientations and electrode contact sites. The transport calculations indicate that a single-molecule switch and a significant enhancement of spin transport and photoresponse can be achieved when the molecular adsorption orientation changes from planar geometry to upright geometry. The maximum spin polarization of current and photocurrent in upright molecular junctions exceeds 90%. Moreover, as the Ni tip electrode moves, the tunneling magnetoresistance of upright molecular junctions can be increased to 70%. The analysis of the spin-dependent PDOS elucidates that the spinterfaces between organic molecule and ferromagnetic electrodes are modulated by molecular adsorption orientation, where the molecule in upright molecular junctions yields higher spin polarization. Our theoretical work paves the way for designing spintronic devices and optoelectronic devices with anisotropic functionality base on anisotropic molecules.
Keywords:  molecular spintronics      spin polarization      tunneling magnetoresistance      photocurrent      single-molecule junctions  
Received:  12 October 2023      Revised:  01 January 2024      Accepted manuscript online:  15 January 2024
PACS:  72.25.-b (Spin polarized transport)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974217, 12204281, and 21933002) and the Shandong Provincial Natural Science Foundation (Grant No. ZR2022QA068).
Corresponding Authors:  Zong-Liang Li, Shuai Qiu     E-mail:  lizongliang@sdnu.edu.cn;shuaiqiu@sdnu.edu.cn

Cite this article: 

Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅) Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction 2024 Chin. Phys. B 33 047201

[1] Naber W J M, Faez S and Wiel W G V D 2007 J. Phys. D:Appl. Phys. 40 R205
[2] Lv X R, Liang S H, Tao L L and Han X F 2014 Spin 4 1440013
[3] Sanvito S 2011 Chem. Soc. Rev. 40 3336
[4] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P and Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711
[5] Guo L, Qin Y, Gu X, Zhu X, Zhou Q and Sun X 2019 Front. Chem. 7 428
[6] Miao Y, Qiu S, Zhang G, Ren J, Wang C and Hu G 2018 Phys. Rev. B 98 235415
[7] Rocha A R, García-Suárez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S 2005 Nat. Mater. 4 335
[8] Sun D, Ehrenfreund E and Vardeny Z V 2014 Chem. Commun. 50 1781
[9] Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F and Fert A 2010 Nat. Phys. 6 615
[10] Cinchetti M, Dediu V A and Hueso L E 2017 Nat. Mater. 16 507
[11] Raman K V, Kamerbeek A M, Mukherjee A, Atodiresei N, Sen T K, Lazić P, Caciuc V, Michel R, Stalke D, Mandal S K, Blügel S, Münzenberg M and Moodera J S 2013 Nature 493 509
[12] Sanvito S 2010 Nat. Phys. 6 562
[13] Galbiati M, Tatay S, Barraud C, Dediu A V, Petroff F, Mattana R and Seneor P 2014 MRS Bull. 39 602
[14] Liang S H, Liu D P, Tao L L, Han X F and Guo H 2012 Phys. Rev. B 86 224419
[15] Sun M and Mi W 2018 J. Mater. Chem. C 6 6619
[16] Gao F, Li D, Barreteau C and Brandbyge M 2022 Phys. Rev. Lett. 129 027201
[17] Lach S, Altenhof A, Tarafder K, Schmitt F, Ali M E, Vogel M, Sauther J, Oppeneer P M and Ziegler C 2012 Adv. Funct. Mater. 22 989
[18] Shi S, Sun Z, Bedoya-Pinto A, Graziosi P, Li X, Liu X, Hueso L, Dediu V A, Luo Y and Fahlman M 2014 Adv. Funct. Mater. 24 4812
[19] Guo L, Gu X, Zhu X and Sun X 2019 Adv. Mater. 31 1805355
[20] Delprat S, Galbiati M, Tatay S, Quinard B, Barraud C, Petroff F, Seneor P and Mattana R 2018 J. Phys. D:Appl. Phys. 51 473001
[21] Kawahara S L, Lagoute J, Repain V, Chacon C, Girard Y, Rousset S, Smogunov A and Barreteau C 2012 Nano Lett. 12 4558
[22] Dalgleish H and Kirczenow G 2006 Phys. Rev. B 73 245431
[23] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2020 J. Phys. Chem. C 124 12144
[24] Zhang N, Lo W Y, Cai Z, Li L and Yu L 2017 Nano Lett. 17 308
[25] Zhang G P, Mu Y Q, Wei M Z, Wang S, Huang H, Hu G C, Li Z L and Wang C K 2018 J. Mater. Chem. C 6 2105
[26] Tao L L and Wang J 2017 Nanoscale 9 12684
[27] Li D, Banerjee R, Mondal S, Maliyov I, Romanova M, Dappe Y J and Smogunov A 2019 Phys. Rev. B 99 115403
[28] Goren N, Das T K, Brown N, Gilead S, Yochelis S, Gazit E, Naaman R and Paltiel Y 2021 Nano Lett. 21 8657
[29] Cardona-Serra S, Gaita-Ariño A, Stamenova M and Sanvito S 2017 J. Phys. Chem. Lett. 8 3056
[30] Zhang X, Tong J, Zhu H, Wang Z, Zhou L, Wang S, Miyashita T, Mitsuishi M and Qin G 2017 J. Mater. Chem. C 5 5055
[31] Yao X, Duan Q, Tong J, Chang Y, Zhou L, Qin G and Zhang X 2018 Materials 11 721
[32] Vezzoli A, Brooke R J, Higgins S J, Schwarzacher W and Nichols R J 2017 Nano Lett. 17 6702
[33] Han X, Mi W and Wang X 2019 J. Mater. Chem. C 7 4079
[34] Zhou Y, Yu S and Zheng X 2020 Carbon 170 361
[35] Chen J, Zhang L, Zhang L, Zheng X, Xiao L, Jia S and Wang J 2018 Phys. Chem. Chem. Phys. 20 26744
[36] Michnowicz T, Borca B, Pétuya R, Schendel V, Pristl M, Pentegov I, Kraft U, Klauk H, Wahl P, Mutombo P, Jelínek P, Arnau A, Schlickum U and Kern K 2020 Angew. Chem. Int. Ed. 59 6207
[37] Herrer I L, Ismael A K, Milán D C, Vezzoli A, Martín S, González-Orive A, Grace I, Lambert C, Serrano J L, Nichols R J and Cea P 2018 J. Phys. Chem. Lett. 9 5364
[38] Wang Y H, Zhou X Y, Sun Y Y, Han D, Zheng J F, Niu Z J and Zhou X S 2014 Electrochim. Acta 123 205
[39] Li X M, Wang Y H, Seng J W, Zheng J F, Cao R, Shao Y, Chen J Z, Li J F, Zhou X S and Mao B W 2021 ACS Appl. Mater. Interfaces 13 8656
[40] Zhu Z, Qu H, Chen Y, Zhang C, Li R, Zhao Y, Zhou Y, Chen Z, Liu J, Xiao Z and Hong W 2021 J. Mater. Chem. C 9 16192
[41] Gao T, Pan Z, Cai Z, Zheng J, Tang C, Yuan S, Zhao S, Bai H, Yang Y, Shi J, Xiao Z, Liu J and Hong W 2021 Chem. Commun. 57 7160
[42] Yasini P, Afsari S, Peng H, Pikma P, Perdew J P and Borguet E 2019 J. Am. Chem. Soc. 141 10109
[43] Pal A N, Li D, Sarkar S, Chakrabarti S, Vilan A, Kronik L, Smogunov A and Tal O 2019 Nat. Commun. 10 5565
[44] Afsari S, Yasini P, Peng H, Perdew J P and Borguet E 2019 Angew. Chem. Int. Ed. 58 14275
[45] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.:Condens. Matter 14 2745
[46] Atomistix ToolKit version2018.06, Synopsys QuantumWise A/S (www.quantumwise.com).
[47] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[48] Troullier N and Martins J 1990 Solid State Commun. 74 613
[49] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 77 3865
[50] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[51] Chen J, Hu Y and Guo H 2012 Phys. Rev. B 85 155441
[52] Henrickson L E 2002 J. Appl. Phys. 91 6273
[53] Zhang L, Gong K, Chen J, Liu L, Zhu Y, Xiao D and Guo H 2014 Phys. Rev. B 90 195428
[54] Afsari S, Li Z and Borguet E 2014 Angew. Chem. Int. Ed. 53 9771
[55] Larade B, Taylor J, Zheng Q R, Mehrez H, Pomorski P and Guo H 2001 Phys. Rev. B 64 195402
[1] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[2] One ε-Ga2O3-based solar-blind Schottky photodetector emphasizing high photocurrent gain and photocurrent-intensity linearity
Yue-Hua An(安跃华), Zhen-Sen Gao(高震森), Yu Guo(郭雨), Shao-Hui Zhang(张少辉), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(5): 058502.
[3] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[4] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[5] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[6] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[7] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[8] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[9] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[10] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[11] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[12] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[13] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[14] Studying the charge carrier properties in CuInS2 films via femtosecond transient absorption and nanosecond transient photocurrents
Mingrui Tan(谭铭瑞), Qinghui Liu(刘庆辉), Ning Sui(隋宁), Zhihui Kang(康智慧), Liquan Zhang(张里荃), Hanzhuang Zhang(张汉壮), Wenquan Wang(王文全), Qiang Zhou(周强), Yinghui Wang(王英惠). Chin. Phys. B, 2019, 28(5): 056106.
[15] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
No Suggested Reading articles found!