Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 097201    DOI: 10.1088/1674-1056/25/9/097201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Unified semiclassical approach to electronic transport from diffusive to ballistic regimes

Hao Geng(耿浩)1, Wei-Yin Deng(邓伟胤)1, Yue-Jiao Ren(任月皎)1, Li Sheng(盛利)1,2, Ding-Yu Xing(邢定钰)1,2
1. National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
2. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  

We show that by integrating out the electric field and incorporating proper boundary conditions, a Boltzmann equation can describe electron transport properties, continuously from the diffusive to ballistic regimes. General analytical formulas of the conductance in D=1,2,3 dimensions are obtained, which recover the Boltzmann-Drude formula and Landauer-Büttiker formula in the diffusive and ballistic limits, respectively. This intuitive and efficient approach can be applied to investigate the interplay of system size and impurity scattering in various charge and spin transport phenomena, when the quantum interference effect is not important.

Keywords:  Boltzmann equation      ballistic transport      diffusive transport      size effect  
Received:  09 May 2016      Revised:  30 May 2016      Accepted manuscript online: 
PACS:  72.10.Bg (General formulation of transport theory)  
  73.23.Ad (Ballistic transport)  
  72.15.Lh (Relaxation times and mean free paths)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921202 and 2014CB921103) and the National Natural Science Foundation of China (Grant No. 11225420).

Corresponding Authors:  Li Sheng     E-mail:  shengli@nju.edu.cn

Cite this article: 

Hao Geng(耿浩), Wei-Yin Deng(邓伟胤), Yue-Jiao Ren(任月皎), Li Sheng(盛利), Ding-Yu Xing(邢定钰) Unified semiclassical approach to electronic transport from diffusive to ballistic regimes 2016 Chin. Phys. B 25 097201

[1] Harris S 2004 An Introduction to the Theory of the Boltzmann Equation (Dover books) (North Chelmsford: Courier Corporation)
[2] Cercignani C 2012 The Boltzmann Equation and Its Applications (New York: Springer)
[3] Drude P 2009 Chin. Phys. B 18 2975
[4] Drude P 1900 Annalen der Physik 306 566
[5] Drude P 1900 Annalen der Physik 308 369
[6] Mahan G D 1990 Many-Particle Physics (New York: Plenum)
[7] Landauer R 1957 IBM J. Res. Dev. 1 223
[8] Landauer R 1970 Phil. Mag. 21 863
[9] B¨uttiker M 1986 Phys. Rev. Lett. 57 1761
[10] B¨uttiker M 1988 Phys. Rev. B 38 9375
[11] B¨uttiker M 1988 IBM J. Res. Dev. 32 317
[12] Economou E N and Soukoulis C M 1981 Phys. Rev. Lett. 46 618
[13] Fisher D S and Lee P A 1981 Phys. Rev. B 23 6851
[14] Baranger H U and Stone A D 1989 Phys. Rev. B 40 8169
[15] Cattena C J, Fernandez-Alcazar L J, Bustos-Marun R A, Nozaki D and Pastawski H M 2014 J. Phys.: Condens. Matter 26 345304
[16] Fernandez-Alcazar L J and Pastawski H M 2015 Phys. Rev. A 91 022117
[17] Fenton E W 1992 Phys. Rev. B 46 3754
[18] Pastawski H M 1991 Phys. Rev. B 44 6329
[19] Nazarov Y and Blanter Y 2009 Quantum Transport: Introduction to Nanoscience (Cambridge: Cambridge University Press)
[20] Sheng L , Xing D Y, Wang Z D and Dong J 1997 Phys. Rev. B 55 5908
[21] Sheng L, Teng H Y and Xing D Y 1998 Phys. Rev. B 58 6428
[22] Sheng L, Li H C, Yang Y Y, Sheng D N and Xing D Y 2013 Chin. Phys. B 22 067201
[23] Zhang S 2000 Phys. Rev. Lett. 85 393
[24] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[25] Imry Y 1986 Directions in Condensed Matter Physics (edited by Grinstein G and Mazenko G) (Vol. 1) (Singapore: World Scientific) p. 102
[26] Hua Y C and Cao B Y 2014 Int. J. Heat Mass Trans. 78 755
[27] Hua Y C, Dong Y and Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese)
[28] Hu G J and Cao B Y 2014 Chin. Phys. B 23 096501
[29] Hu Q W, Cao B Y and Guo Z Y 2009 Acta Phys. Sin. 58 780906 (in Chinese)
[30] Wang X D and Wang Z M M 2014 Nanoscale Thermoelectrics (Switzerland: Springer) p. 8
[1] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[2] Characterization of size effect of natural convection in melting process of phase change material in square cavity
Shi-Hao Cao(曹世豪) and Hui Wang(王辉). Chin. Phys. B, 2021, 30(10): 104403.
[3] Size effect of Si particles on the electrochemical performances of Si/C composite anodes
Bonan Liu(刘柏男), Hao Lu(陆浩), Geng Chu(褚赓), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Shimou Chen(陈仕谋), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088201.
[4] Spin-dependent balance equations in spintronics
Zheng-Chuan Wang(王正川). Chin. Phys. B, 2018, 27(1): 016701.
[5] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[6] Semi-analytical method of calculating the electrostatic interaction of colloidal solutions
Hongqing Tian(田洪庆), Zengju Lian(连增菊). Chin. Phys. B, 2017, 26(1): 017801.
[7] Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm
Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2016, 25(8): 086502.
[8] Finite size effects on the helical edge states on the Lieb lattice
Rui Chen(陈锐), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(6): 067204.
[9] Temperature-dependent specific heat of suspended platinum nanofilms at 80-380 K
Qin-Yi Li(李秦宜), Masahiro Narasaki(楢崎将弘), Koji Takahashi(高桥厚史), Tatsuya Ikuta(生田竜也), Takashi Nishiyama(西山贵史), Xing Zhang(张兴). Chin. Phys. B, 2016, 25(11): 114401.
[10] Transport properties of the topological Kondo insulator SmB6 under the irradiation of light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏). Chin. Phys. B, 2016, 25(10): 107303.
[11] Improvements in continuum modeling for biomolecular systems
Yu Qiao(乔瑜) and Ben-Zhuo Lu(卢本卓). Chin. Phys. B, 2016, 25(1): 018705.
[12] Size effects in lithium ion batteries
Hu-Rong Yao(姚胡蓉), Ya-Xia Yin(殷雅侠), Yu-Guo Guo (郭玉国). Chin. Phys. B, 2016, 25(1): 018203.
[13] Finite size effects on the quantum spin Hall state in HgTe quantum wells under two different types of boundary conditions
Cheng Zhi (成志), Chen Rui (陈锐), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(6): 067304.
[14] Structure, morphology, and magnetic properties of high-performance NiCuZn ferrite
He Xue-Min (何学敏), Yan Shi-Ming (颜士明), Li Zhi-Wen (李志文), Zhang Xing (张星), Song Xue-Yin (宋雪银), Qiao Wen (乔文), Zhong Wei (钟伟), Du You-Wei (都有为). Chin. Phys. B, 2015, 24(12): 127502.
[15] Finite size effects on helical edge states in HgTe quantum wells with the spin–orbit coupling due to bulk-and structure-inversion asymmetries
Cheng Zhi (成志), Zhou Bin (周斌). Chin. Phys. B, 2014, 23(3): 037304.
No Suggested Reading articles found!