CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhanced stability of FA-based perovskite: Rare-earth metal compound EuBr2 doping |
Minna Hou(候敏娜)1, Xu Guo(郭旭)1, Meidouxue Han(韩梅斗雪)2, Juntao Zhao(赵均陶)2, Zhiyuan Wang(王志元)1, Yi Ding(丁毅)2,†, Guofu Hou(侯国付)2, Zongsheng Zhang(张宗胜)1, and Xiaoping Han(韩小平)1,‡ |
1 School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; 2 Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300072, China |
|
|
Abstract It is highly desirable to enhance the long-term stability of perovskite solar cells (PSCs) so that this class of photovoltaic cells can be effectively used for the commercialization purposes. In this contribution, attempts have been made to use the two-step sequential method to dope EuBr2 into FAMAPbI3 perovskite to promote the stability. It is shown that the device durability at 85 ℃ in air with RH of 20%—40% is improved substantially, and simultaneously the champion device efficiency of 23.04% is achieved. The enhancement in stability is attributed to two points: (i) EuBr2 doping effectively inhibits the decomposition and α—δ phase transition of perovskite under ambient environment, and (ii) EuBr2 aggregates in the oxidized format of Eu(BrO3)3 at perovskite grain boundaries and surface, hampering humidity erosion and mitigates degradation through coordination with H2O.
|
Received: 15 November 2023
Revised: 16 January 2024
Accepted manuscript online: 30 January 2024
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
Fund: Project supported by the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302124228), the National Key Research and Development Program of China (Grant No. 2022YFB4200203), the Key Project of Natural Science Foundation of Tianjin (Grant No. 22JCZDJC00120), and the 111 Project (Grant No. B16027). |
Corresponding Authors:
Yi Ding, Xiaoping Han
E-mail: yiding@nankai.edu.cn;xiaopinghan@nuc.edu.cn
|
Cite this article:
Minna Hou(候敏娜), Xu Guo(郭旭), Meidouxue Han(韩梅斗雪), Juntao Zhao(赵均陶), Zhiyuan Wang(王志元), Yi Ding(丁毅), Guofu Hou(侯国付), Zongsheng Zhang(张宗胜), and Xiaoping Han(韩小平) Enhanced stability of FA-based perovskite: Rare-earth metal compound EuBr2 doping 2024 Chin. Phys. B 33 047802
|
[1] "Best Research-Cell Efficiency Chart, Photovoltaic Research", NREL [2] Xiong M, Zou W J, Fan K, Qin C C, Li S B, Fei L F, Jiang J Z, Huang H T, Shen L, Gao F, Jen A K Y and Yao K 2022 ACS Energy Lett. 7 550 [3] Azmi R, Ugur E, Seitkhan A, Aljamaan F, Subbiah A S, Liu J, Harrison G T, Nugraha M I, Eswaran M K, Babics M, Chen Y, Xu F Z, Allen T G, Rehman A U, Wang C L, Anthopoulos T D, Schwingenschlög U, Bastiani M D, Aydin E and Wolf S D 2022 Science 376 73 [4] Jang Y W, Lee S, Yeom K M, Jeong K, Choi K, Choi M and Noh J H 2021 Nat. Energy 6 63 [5] Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y Y and Zhu K 2022 Nature 611 278 [6] Ma S, Yuan G Z, Zhang Y, Yang N, Li Y J and Chen Q 2022 Energy Environ. Sci. 15 13 [7] Mei A Y, Sheng Y S, Ming Y, Hu Y, Rong Y G, Zhang W H, Luo S L, Na G R, Tian C B, Hou X M, Xiong Y L, Zhang Z H, Liu S, Uchida S, Kim T W, Yuan Y B, Zhang L J, Zhou Y H and Han H W 2020 Joule 4 2646 [8] Zhang S and Han G F 2020 Prog. Energy 2 022002 [9] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 982 [10] Han Q F, Bae S H, Sun P Y, Hsieh Y T, Yang Y, Rim Y S, Zhao H X, Chen Q, Shi W Z, Li G and Yang Y 2016 Adv. Mater. 28 2253 [11] Fan Z, Xiao H, Wang Y L, Zhao Z P, Lin Z Y, Cheng H C, Lee S J, Wang G M, Feng Z Y, Goddard W A, Huang Y and Duan X F 2017 Joule 1 548 [12] Abdelmageed G, Mackeen C, Hellier K, Jewell L, Seymour L, Tingwald M, Bridges F, Zhang J Z and Carter S 2018 Sol. Energy Mater. Sol. Cells 174 566 [13] Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T and Haque S A 2015 Angew. Chem. Int. Ed. 54 8208 [14] Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R and Haque S A 2016 Energy Environ. Sci. 9 1655 [15] Wang Q, Chen B, Liu Y, Deng Y H, Bai Y, Dong Q F and Huang J S 2017 Energy Environ. Sci. 10 516 [16] Yang J, He T W, Li M, Li G X, Liu H R, Xu J J, Zhang M, Zuo W W, Qin R P, Aldamasy M H, Yuan M J, Li Z, Byranvand M M, Saliba M and Abate A 2022 ACS Energy Lett. 7 4451 [17] Zhou T, Xu Z Y, Wang R, Dong X Y, Fu Q and Liu Y S 2022 Adv. Mater. 34 2200705 [18] Bu T L, Li J, Li H Y, Tian C C, Su J, Tong G Q, Ono L K, Wang C, Lin Z P, Chai N Y, Zhang X L, Chang J J, Lu J F, Zhong J, Huang W C, Qi Y B, Cheng Y B and Huang F Z 2021 Science 372 1327 [19] Tomulescu A G, Leonat L N, Neaţu F, Stancu V, Toma V, Derbali S, Neaţu cS, Rostas A M, Becsleagva C, Pvatru R, Pintilie I and Florea M 2021 Sol. Energy Mater. Sol. Cells 227 111096 [20] Chen B B, Wang P Y, Li R J, Ren N Y, Han W, Zhu Z, Wang J, Wang S L, Shi B, Liu J J, Liu P F, Huang Q, Xu S Z, Zhao Y and Zhang X D 2022 ACS Energy Lett. 7 2771 [21] Bai D L, Zhang J R, Jin Z W, Bian H, Wang K, Wang H R, Liang L, Wang Q and Liu S Z 2018 ACS Energy Lett. 3 970 [22] Swarnkar A, Mir W J and Nag A 2018 ACS Energy Lett. 3 286 [23] Syzgantseva O A, Saliba M, Gr"atzel M and Rothlisberger U 2017 J. Phys. Chem. Lett. 8 1191 [24] Zhao Y, Ma F, Qu Z H, Yu S Q, Shen T, Deng H X, Chu X B, Peng X X, Yuan Y B, Zhang X W and You J B 2022 Science 377 531 [25] Yang S M, Zhao H, Han Y, Duan C Y, Liu Z K and Liu S Z 2019 Small 15 1904387 [26] Karunakaran S K, Arumugam G M, Yang W T, Ge S J, Khan S N, Mai Y H, Lin X Z and Yang G W 2020 Solar RRL 4 2000390 [27] Xiang W C, Wang Z W, Kubicki D J, Tress W, Luo J S, Prochowicz D, Akin S, Emsley L, Zhou J T, Dietler G, Grätzel M and Hagfeldt A 2019 Joule 3 205 [28] Wang L G, Zhou H P, Hu J N, Huang B L, Sun M Z, Dong B W, Zheng G H H, Huang Y, Chen Y H, Li L, Xu Z Q, Li N X, Liu Z, Chen Q, Sun L D and Yan C H 2019 Science 363 265 [29] Hou M N, Xu Y Z, Zhou B, Tian Y, Wu Y, Zhang D K, Wang G C, Li B Z, Ren H Z, Li Y L, Huang Q, Ding Y, Zhao Y, Zhang X D and Hou G F 2020 Adv. Funct. Mater. 30 2002366 [30] Lei J, Chang L Y, Dong Z H and Liu L J 2021 Mater. Res. Bull. 137 111191 [31] Ozekin K, Westerhoff P, Gary L A and Siddiqui M 1998 J. Environ. Eng. 124 456 [32] Van Gunten U 2003 Water Res. 37 1469 [33] Bushiri M J and Nayar V U 2001 Int. J. Mod. Phys. B 15 2499 [34] Tilkens L, Randall K, Sun J, Berry M T, May P S and Yamase T 2004 J. Phys. Chem. A 108 6624 [35] Song Z, Abate A, Watthage S C, Liyanage G K, Phillips A B, Steiner U, Graetzel M and Heben M J 2016 Adv. Energy Mater. 6 1600846 [36] Mosconi E, Azpiroz J M and Angelis F D 2015 Chem. Mater. 27 4885 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|