Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047803    DOI: 10.1088/1674-1056/ad2509
Special Issue: SPECIAL TOPIC — Optical field manipulation
TOPICAL REVIEW—Optical field manipulation Prev   Next  

Strong field ionization of molecules on the surface of nanosystems

Qiwen Qu(曲棋文)1, Fenghao Sun(孙烽豪)1, Jiawei Wang(王佳伟)1, Jian Gao(高健)1,2, Hui Li(李辉)1,†, and Jian Wu(吴健)1,2,3,4
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China;
2 Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401121, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
4 CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai 201800, China
Abstract  Besides the diverse investigations on the interactions between intense laser fields and molecular systems, extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailored femtosecond laser fields. Due to the fact that nanostructures hold peculiar effects when illuminated by laser pulses, the underlying mechanisms and the corresponding potential applications can make significant improvements in both fundamental research and development of novel techniques. In this review, we provide a summarization of the strong field ionization occurring on the surface of nanosystems. The molecules attached to the nanoparticle surface perform as the precursor in the ionization and excitation of the whole nanosystem, the fundamental processes of which are yet to be discovered. We discuss the influence on nanoparticle constituents, geometric shapes and sizes, as well as the specific waveforms of the excitation laser fields. The intriguing characteristics observed in surface ion emission reflect how enhanced near field affects the localized ionizations and nanoplasma expansions, thereby paving the way for further precision controls on the light-and-matter interactions in the extreme spatial temporal levels.
Keywords:  nanoparticle      femtosecond laser field      local field enhancement  
Received:  27 December 2023      Revised:  25 January 2024      Accepted manuscript online:  02 February 2024
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  82.53.Xa (Femtosecond probes of molecules in solids and of molecular solids)  
  79.60.Bm (Clean metal, semiconductor, and insulator surfaces)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
Fund: Project supported by the National Natural Science Fundation of China (Grant Nos. 92050105, 92250301, and 12227807).
Corresponding Authors:  Hui Li     E-mail:  hli@lps.ecnu.edu.cn

Cite this article: 

Qiwen Qu(曲棋文), Fenghao Sun(孙烽豪), Jiawei Wang(王佳伟), Jian Gao(高健), Hui Li(李辉), and Jian Wu(吴健) Strong field ionization of molecules on the surface of nanosystems 2024 Chin. Phys. B 33 047803

[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G and Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35
[3] Scrinzi A, Ivanov M Y, Kienberger R and Villeneuve D M 2006 J. Phys. B:At. Mol. Opt. Phys. 39 R1
[4] Milošević D B, Paulus G G, Bauer D and Becker W 2006 J. Phys. B:At. Mol. Opt. Phys. 39 R203
[5] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[6] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[7] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[8] Krausz F and Stockman M I 2014 Nat. Photonics 8 205
[9] Schoetz J, Wang Z, Pisanty E, Lewenstein M, Kling M F and Ciappina M F 2019 ACS Photonics 6 3057
[10] Thomas S, Wachter G, Lemell C, Burgdörfer J and Hommelhoff P 2015 New J. Phys. 17 063010
[11] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
[12] Rupp P, Burger C, Kling N G, Kübel M, Mitra S, Rosenberger P, Weatherby T, Saito N, Itatani J, Alnaser A S, Raschke M B, Rühl E, Schlander A, Gallei M, Seiffert L, Fennel T, Bergues B and Kling M F 2019 Nat. Commun. 10 4655
[13] Rupp P, Seiffert L, Liu Q, SüŞmann F, Ahn B, Förg B, Schäfer C G, Gallei M, Mondes V, Kessel A, Trushin S, Graf C, Rühl E, Lee J, Kim M S, Kim D E, Fennel T, Kling M F and Zherebtsov S 2017 J. Mod. Opt. 64 995
[14] Liu Q, Seiffert L, SüŞmann F, Zherebtsov S, Passig J, Kessel A, Trushin S A, Kling N G, Ben-Itzhak I, Mondes V, Graf C, Rühl E, Veisz L, Karsch S, Rodríguez-Fernández J, Stockman M I, Tiggesbäumker J, Meiwes-Broer K H, Fennel T and Kling M F 2020 ACS Photonics 7 3207
[15] Rosenberger P, Dagar R, Zhang W, Sousa-Castillo A, Neuhaus M, Cortes E, Maier S A, Costa-Vera C, Kling M F and Bergues B 2022 Eur. Phys. J. D 76 109
[16] Salditt T, Egner A and Luke D R 2020 Nanoscale Photonic Imaging (Cham:Springer) p. 523
[17] Powell J A, Summers A M, Liu Q, Robatjazi S J, Rupp P, Stierle J, Trallero-Herrero C, Kling M F and Rudenko A 2019 Opt. Express 27 27124
[18] Seiffert L, SüŞmann F, Zherebtsov S, Rupp P, Peltz C, Rühl E, Kling M F and Fennel T 2016 Appl. Phys. B 122 101
[19] Li H, Gong X, Lin K, De Vivie-Riedle R, Tong X M, Wu J and Kling M F 2017 J. Phys. B:At. Mol. Opt. Phys. 50 172001
[20] Zhang W, Yu Z, Gong X, Wang J, Lu P, Li H, Song Q, Ji Q, Lin K, Ma J, Li H, Sun F, Qiang J, Zeng H, He F and Wu J 2017 Phys. Rev. Lett. 119 253202
[21] Zhang W, Li H, Gong X, Lu P, Song Q, Ji Q, Lin K, Ma J, Li H, Sun F, Qiang J, Zeng H and Wu J 2018 Phys. Rev. A 98 013419
[22] Zhang W, Dagar R, Rosenberger P, Sousa-Castillo A, Neuhaus M, Li W, Khan S A, Alnaser A S, Cortes E, Maier S A, Costa-Vera C, Kling M F and Bergues B 2022 Optica 9 551
[23] Hickstein D D, Dollar F, Gaffney J A, Foord M E, Petrov G M, Palm B B, Keister K E, Ellis J L, Ding C, Libby S B, Jimenez J L, Kapteyn H C, Murnane M M and Xiong W 2014 Phys. Rev. Lett. 112 115004
[24] Sun F, Li H, Song S, Chen F, Wang J, Qu Q, Lu C, Ni H, Wu B, Xu H and Wu J 2021 Nanophotonics 10 2651
[25] Greaves J and Roboz J 2013 Mass Spectrometry for the Novice (Boca Raton:Taylor & Francis Group) p. 42
[26] Eppink A T J B and Parker D H 1997 Rev. Sci. Instrum. 68 3477
[27] Hickstein D D, Ranitovic P, Witte S, Tong X M, Huismans Y, Arpin P, Zhou X, Keister K E, Hogle C W, Zhang B, Ding C, Johnsson P, Toshima N, Vrakking M J J, Murnane M M and Kapteyn H C 2012 Phys. Rev. Lett. 109 073004
[28] Rosenberger P, Dagar R, Zhang W, Majumdar A, Neuhaus M, Ihme M, Bergues B and Kling M F 2023 Nanophotonics 12 1823
[29] Hickstein D D, Dollar F, Ellis J L, Schnitzenbaumer K J, Keister K E, Petrov G M, Ding C, Palm B B, Gaffney J A, Foord M E, Libby S B, Dukovic G, Jimenez J L, Kapteyn H C, Murnane M M and Xiong W 2014 ACS Nano 8 8810
[30] Mie G 1908 Ann. Phys. 330 377
[31] Rosenberger P, Rupp P, Ali R, Alghabra M S, Sun S, Mitra S, Khan S A, Dagar R, Kim V, Iqbal M, Schötz J, Liu Q, Sundaram S K, Kredel J, Gallei M, Costa-Vera C, Bergues B, Alnaser A S and Kling M F 2020 ACS Photonics 7 1885
[32] Han X, Huang H, Huang X, Cao W, Zhang Q and Lu P 2023 Adv. Opt. Mater. 11 2201260
[33] Wang J, Qu Q, Sun F, Song S, Gao J, Wu B, Xu H, Li H and Wu J 2023 Opt. Express 31 9678
[34] Rayleigh F R S L 1882 Lond. Edinb. Dublin Philos. Mag. J. Sci. 14 184
[35] Bohren C F and Huffman D R 1998 Absorption and Scattering of Light by Small Particles (New York:John Wiley & Sons) p. 82
[36] Ditmire T, Donnelly T, Rubenchik A M, Falcone R W and Perry M D 1996 Phys. Rev. A 53 3379
[37] Ammosov M V, Delone N B and Krainov V 1986 Proceedings of the 1986 Quebec Symposium, June 3——6, 1986, Quebec, Canada, p. 0664
[38] Döppner T, Müller J P, Przystawik A, Göde S, Tiggesbäumker J, Meiwes-Broer K H, Varin C, Ramunno L, Brabec T and Fennel T 2010 Phys. Rev. Lett. 105 053401
[39] Döppner T, Fennel T, Diederich T, Tiggesbäumker J and Meiwes-Broer K H 2005 Phys. Rev. Lett. 94 013401
[40] Döppner T, Fennel T, Radcliffe P, Tiggesbäumker J and Meiwes-Broer K H 2006 Phys. Rev. A 73 031202
[1] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[2] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[3] Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
Fengguo Fan(范凤国) and Lintong Duan(段林彤). Chin. Phys. B, 2024, 33(3): 037502.
[4] Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia
Yundong Tang(汤云东), Ming Chen(陈鸣), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(9): 094401.
[5] Theoretical investigation of F-P cavity mode manipulation by single gold nanoparticles
Xusheng Shi(史旭升), Zhiqiang Luo(罗志强), Zhi-Yuan Li(李志远), and Huakang Yu(虞华康). Chin. Phys. B, 2023, 32(8): 084204.
[6] Temperature-free mass tracking of a levitated nanoparticle
Yuan Tian(田原), Yu Zheng(郑瑜), Lyu-Hang Liu(刘吕航), Guang-Can Guo(郭光灿), and Fang-Wen Sun(孙方稳). Chin. Phys. B, 2023, 32(7): 074207.
[7] Molecular fluorescence significantly enhanced by gold nanoparticles@zeolitic imidazolate framework-8
Yuyi Zhang(张钰伊), Yajie Bian(卞亚杰), Wei Zhang(张炜), Yiting Liu(刘易婷), Xiaolei Zhang(张晓磊),Mengdi Chen(陈梦迪), Bingwen Hu(胡炳文), and Qingyuan Jin(金庆原). Chin. Phys. B, 2023, 32(5): 054208.
[8] Effect of magnetic nanoparticles on magnetic field homogeneity
Si-Lin Guo(郭斯琳), Wen-Tong Yi(易文通), and Zhuang-Zhuang Li(李壮壮). Chin. Phys. B, 2023, 32(5): 050203.
[9] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[10] Surface lattice resonance of circular nano-array integrated on optical fiber tips
Jian Wu(吴坚), Gao-Jie Ye(叶高杰), Xiu-Yang Pang(庞修洋), Xuefen Kan(阚雪芬), Yan Lu(陆炎), Jian Shi(史健), Qiang Yu(俞强), Cheng Yin(殷澄), and Xianping Wang(王贤平). Chin. Phys. B, 2023, 32(12): 120701.
[11] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[12] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[13] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[14] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[15] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
No Suggested Reading articles found!