Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050703    DOI: 10.1088/1674-1056/ad2a77
REVIEW Prev   Next  

A historical overview of nano-optics: From near-field optics to plasmonics

Miao-Yi Deng(邓妙怡)1,†, and Xing Zhu(朱星)2
1 Department of History of Science, Technology and Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
2 School of Physics, Peking University, Beijing 100871, China
Abstract  Nano-optics is an emergent research field in physics that appeared in the 1980s, which deals with light-matter optical interactions at the nanometer scale. In early studies of nano-optics, the main concern focus is to obtain higher optical resolution over the diffraction limit. The researches of near-field imaging and spectroscopy based on scanning near-field optical microscopy (SNOM) are developed. The exploration of improving SNOM probe for near-field detection leads to the emergence of surface plasmons. In the sense of resolution and wider application, there has been a significant transition from seeking higher resolution microscopy to plasmonic near-field modulations in the nano-optics community during the nano-optic development. Nowadays, studies of nano-optics prefer the investigation of plasmonics in different material systems. In this article, the history of the development of near-field optics is briefly reviewed. The difficulties of conventional SNOM to achieve higher resolution are discussed. As an alternative solution, surface plasmons have shown the advantages of higher resolution, wider application, and flexible nano-optical modulation for new devices. The typical studies in different periods are introduced and characteristics of nano-optics in each stage are analyzed. In this way, the evolution progress from near-field optics to plasmonics of nano-optics research is presented. The future development of nano-optics is discussed then.
Keywords:  nano-optics      near-field optics      surface plasmon      plasmonic modulation  
Received:  25 December 2023      Revised:  12 February 2024      Accepted manuscript online:  19 February 2024
PACS:  07.79.Fc (Near-field scanning optical microscopes)  
  61.46.-w (Structure of nanoscale materials)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Corresponding Authors:  Miao-Yi Deng     E-mail:  miaoyideng@foxmail.com

Cite this article: 

Miao-Yi Deng(邓妙怡), and Xing Zhu(朱星) A historical overview of nano-optics: From near-field optics to plasmonics 2024 Chin. Phys. B 33 050703

[1] Wan Q Y, Xiao K, Li Z S, Yang J, Kim J T, Cui X D and Che C M 2022 Adv. Mater. 34 2204839
[2] Parvizi P, Zou R N, Bellinger C, Cheriton R and Spinello D 2023 Photonics-Basel 10 1371
[3] Falkner S, Grade S, Dimou L, Conzelmann K K, Bonhoeffer T, Götz M and Hübener M 2016 Nature 539 248
[4] Kwiat P G 2008 Nature 453 294
[5] Friedman R S, McAlpine M C, Ricketts D S, Ham D and Lieber C M 2005 Nature 434 1085
[6] Koch S W and Knorr A 2001 Science 293 2217
[7] Wang Y, Yang J, Wang Z W, Kong X F, Sun X Y, Tian J J, Zhang X S, Zhao X L, Liu Y P, Li H S, Su Y Q, Hao X R and Xu J 2022 Front. Chem. 10 916553
[8] Kodigala A, Lepetit T and Kanté B 2016 Phys. Rev. B 94 201103(R)
[9] Lal S, Link S and Halas N J 2007 Nat. Photonics 1 641
[10] Prigogine I and Rice Stuart A 1976 Adv. Chem. Phys. (United States: John Wiley & Sons, Inc.) pp. 245-307
[11] Demming A 2020 Phys. World 33 41
[12] Pohl D W, Denk W and Lanz M 1984 Appl. Phys. Lett. 44 651
[13] Catrysse P B and Fan S H 2008 J. Nanophotonics 2 021790
[14] Lereu A L, Passian A and Dumas P 2012 Int. J. Nanotechnol. 9 488
[15] Tsai D P, Jackson H E, Reddick R C, Sharp S H and Warmack R J 1990 Appl. Phys. Lett. 56 1515
[16] Tsai D P, Othonos A, Moskovits M and Uttamchandani D 1994 Appl. Phys. Lett. 64 1768
[17] Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J and Zhu X 2011 Nano Lett. 11 1676
[18] Tsai D P, Kovacs J, Wang Z H, Moskovits M, Shalaev V M, Suh J S and Botet R 1994 Phys. Rev. Lett. 72 4149
[19] Novotny L and van Hulst N 2011 Nat. Photonics 5 83
[20] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[21] Cunningham S L, Maradudin A A and Wallis R F 1974 Phys. Rev. B 10 3342
[22] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[23] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[24] Pendry J B, Aubry A, Smith D R and Maier S A 2012 Science 337 549
[25] Brongersma M L 2015 Faraday Discuss 178 9
[26] Maier S A 2007 Plasmonics: Fundamentals and Applications (Berlin: Springer Science & Business Media) pp. 65-88
[27] Zhu X and Ohtsu M 2000 Near-Field Optics: Principles and Applications - Proceedings of the Second Asia-Pacific Workshop (Beijing: World Scientific Publishing) pp. 9-21
[28] Biagioni P, Huang J S and Hecht B 2012 Rep. Prog. Phys. 75 024402
[29] Wessel J 1985 J. Opt. Soc. Am. B 2 1538
[30] Fischer U C and Pohl D W 1989 Phys. Rev. Lett. 62 458
[31] Novotny L and Stranick S J 2006 Annu. Rev. Phys. Chem. 57 303
[32] Grober R D, Schoelkopf R J and Prober D E 1997 Appl. Phys. Lett. 70 1354
[33] Farahani J N, Pohl D W, Eisler H J and Hecht B 2005 Phys. Rev. Lett. 95 017402
[34] Willets K A, Wilson A J, Sundaresan V and Joshi P B 2017 Chem. Rev. 117 7538
[35] Zhang W H, Fang Z Y and Zhu X 2017 Chem. Rev. 117 5095
[36] Hou W B and Cronin S B 2013 Adv. Funct. Mater. 23 1612
[37] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photonics 4 83
[38] Jiang N N, Zhuo X L and Wang J F 2018 Chem. Rev. 118 3054
[39] Deng M Y, Li Z W, Rong X, Luo Y, Li B W, Zheng L H, Wang X, Lin F, Meixner A J, Braun K, Zhu X and Fang Z Y 2020 Small 16 2003539
[40] Deng M Y, Wang X, Chen J N, Li Z W, Xue M F, Zhou Z Y, Lin F, Zhu X and Fang Z Y 2021 Adv. Funct. Mater. 31 2010234
[41] Li Z W, Li Y, Han T Y, Wang X L, Yu Y, Tay B, Liu Z and Fang Z Y 2017 ACS Nano 11 1165
[42] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
[43] Kotsifaki D G and Chormaic S N 2019 Nanophotonics-Berlin 8 1227
[44] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
[45] Zhang X M, Chen Y L, Liu R S and Tsai D P 2013 Rep. Prog. Phys. 76 046401
[46] High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D and Park H 2015 Nature 522 192
[47] Bao Y J, Jiang Q, Kang Y M, Zhu X and Fang Z Y 2017 Light-Sci. Appl. 6 e17071
[48] Jiang Q, Bao Y J, Lin F, Zhu X, Zhang S and Fang Z Y 2018 Adv. Funct. Mater. 28 1705503
[49] Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B B, Kuan C H, Li T, Zhu S N and Tsai D P 2017 Nat. Commun. 8 187
[50] Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L and Tsai D P 2012 Nano Lett. 12 6223
[51] Li J Y and Ye L F 2023 Nanophotonics-Berlin 12 2189
[52] Li Z W, Liu C X, Rong X, Luo Y, Cheng H T, Zheng L H, Lin F, Shen B, Gong Y J, Zhang S and Fang Z Y 2018 Adv. Mater. 30 1801908
[53] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[54] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[55] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[56] Mak K F and Shan J 2016 Nat. Photonics 10 216
[57] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
[58] Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W and Xu X D 2013 Nat. Commun. 4 1474
[59] Zhu Z Y, Cheng Y C and Schwingenschlogl U 2011 Phys. Rev. B 84 153402
[60] Li Z W, Xiao Y D, Gong Y J, Wang Z P, Kang Y M, Zu S, Ajayan P M, Nordlander P and Fang Z Y 2015 ACS Nano 9 10158
[61] Zhang L, Gogna R, Burg W, Tutuc E and Deng H 2018 Nat. Commun. 9 713
[62] Li B W, Zu S, Zhou J D, Jiang Q, Du B W, Shan H Y, Luo Y, Liu Z, Zhu X and Fang Z Y 2017 ACS Nano 11 9720
[63] Mak K F, He K L, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207
[64] Lee B, Liu W J, Naylor C H, Park J, Malek S C, Berger J S, Johnson A T C and Agarwal R 2017 Nano Lett. 17 4541
[65] Cai T, Dutta S, Aghaeimeibodi S, Yang Z, Nah S, Fourkas J T and Waks E 2017 Nano Lett. 17 6564
[66] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055
[67] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[68] Eginligil M, Cao B C, Wang Z L, Shen X N, Cong C X, Shang J Z, Soci C and Yu T 2015 Nat. Commun. 6 7636
[69] Kumar N, He J Q, He D W, Wang Y S and Zhao H 2014 Nanoscale 6 12690
[70] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[71] Gong S H, Alpeggiani F, Sciacca B, Garnett E C and Kuipers L 2018 Science 359 443
[72] Sun L Y, Wang C Y, Krasnok A, Choi J, Shi J W, Gomez-Diaz J S, Zepeda A, Gwo S, Shih C K, Alu A and Li X Q 2019 Nat. Photonics 13 180
[73] Yadav S N S, Chen P L, Liu C H and Yen T J 2023 Adv. Mater. Interfaces 10 2202403
[1] Tunable artificial plasmonic nanolaser with wide spectrum emission operating at room temperature
Peng Zhou(周鹏), Jia-Qi Guo(郭佳琦), Kun Liang(梁琨), Lei Jin(金磊), Xiong-Yu Liang(梁熊玉), Jun-Qiang Li(李俊强), Xu-Yan Deng(邓绪彦), Jian-Yu Qin(秦建宇), Jia-Sen Zhang(张家森), and Li Yu(于丽). Chin. Phys. B, 2024, 33(5): 054210.
[2] Near-field radiative heat transfer between nanoporous GaN films
Xiaozheng Han(韩晓政), Jihong Zhang(张纪红), Haotuo Liu(刘皓佗), Xiaohu Wu(吴小虎), and Huiwen Leng(冷惠文). Chin. Phys. B, 2024, 33(4): 047801.
[3] Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[4] Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films
Yuxin Li(李宇昕), Hailiang Chen(陈海良), Yingyue Zhang(张赢月), Qiang Chen(陈强), Biao Wu(武彪),Xiaoya Fan(樊晓亚), Yingchao Liu(刘英超), and Mingjian Ma(马明建). Chin. Phys. B, 2023, 32(5): 054209.
[5] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[6] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[7] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[8] Corrigendum to “Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(12): 129901.
[9] Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED
Xiaomiao Li(李晓苗), Famin Liu(刘发民), Zigeng Li(李子更), Hongyan Zhu(朱虹燕), Fan Wang(王帆), and Xiaolan Zhong(钟晓岚). Chin. Phys. B, 2023, 32(11): 114205.
[10] Active control of surface plasmon polaritons with phase change materials
Yuan-Zhen Qi(漆元臻), Qiao Jiang(蒋瞧), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(10): 104202.
[11] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[12] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[13] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[14] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[15] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
No Suggested Reading articles found!