Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 044402    DOI: 10.1088/1674-1056/ad1500
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Thermal transport in composition graded silicene/germanene heterostructures

Zengqiang Cao(曹增强)1,†, Chaoyu Wang(王超宇)2,†, Honggang Zhang(张宏岗)3, Bo You(游波)2, and Yuxiang Ni(倪宇翔)1,‡
1 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
2 Department of Materials Science and the Advanced Coatings Research Center of the China Educational Ministry, Fudan University, Shanghai 200433, China;
3 Key Laboratory of High Performance Scientific Computation, School of Science, Xihua University, Chengdu 610039, China
Abstract  Through equilibrium and non-equilibrium molecular dynamics simulations, we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures. Specifically, we investigated the influence of composition gradient length and heterogeneous particles at the silicene/germanene (SIL/GER) heterostructure interface on heat conduction. Our results indicate that composition graded interface at the interface diminishes the thermal conductivity of the heterostructure, with a further reduction observed as the length increases, while the effect of the heterogeneous particles can be considered negligible. To unveil the influence of composition graded interface on thermal transport, we conducted phonon analysis and identified the presence of phonon localization within the interface composition graded region. Through these analyses, we have determined that the decrease in thermal conductivity is correlated with phonon localization within the heterostructure, where a stronger degree of phonon localization signifies poorer thermal conductivity in the material. Our research findings not only contribute to understanding the impact of interface gradient-induced phonon localization on thermal transport but also offer insights into the modulation of thermal conductivity in heterostructures.
Keywords:  composition graded interface      thermal transport      phonon localization      molecular dynamics  
Received:  31 October 2023      Revised:  27 November 2023      Accepted manuscript online:  13 December 2023
PACS:  44.90.+c (Other topics in heat transfer)  
  02.70.Ns (Molecular dynamics and particle methods)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
  29.50.+v (Computer interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104291).
Corresponding Authors:  Yuxiang Ni     E-mail:  yuxiang.ni@swjtu.edu.cn

Cite this article: 

Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔) Thermal transport in composition graded silicene/germanene heterostructures 2024 Chin. Phys. B 33 044402

[1] Bhimanapati G R, Lin Z, Meunier V, et al. 2015 ACS Nano 9 11509
[2] Tan C, Cao X, Wu X J, et al. 2017 Chem. Rev. 117 6225
[3] Wang L, Hu P, Long Y, et al. 2017 J. Mater. Chem. A 5 22855
[4] Khan K, Tareen A K, Aslam M, et al. 2020 J. Mater. Chem. C 8 387
[5] Butler S Z, Hollen S M, Cao L, et al. 2013 ACS Nano 7 2898
[6] Zhu F F, Chen W J, Xu Y, et al. 2015 Nat. Mater. 14 1020
[7] Balendhran S, Walia S, Nili H, et al. 2015 Small 11 640
[8] Ling X, Lin Y, Ma Q et al. 2015 arXiv preprint arXiv:1512.04492
[9] Jia L, Wu J, Zhang Y, et al. 2022 Small Methods 6 2101435
[10] Wang J, Li Z, Chen H, et al. 2019 Nano-Micro Lett. 11 48
[11] Levendorf M P, Kim C J, Brown L, et al. 2012 Nature 488 627
[12] Gong Y, Lin J, Wang X, et al. 2014 Nat. Mater. 13 1135
[13] Ogikubo T, Shimazu H, Fujii Y, et al. 2020 Adv. Mater. Interfaces 7 1902132
[14] Quertite K, Enriquez H, Trcera N, et al. 2021 Adv. Funct. Mater. 31 2007013
[15] Zhao J, Liu H, Yu Z, et al. 2016 Prog. Mater. Sci. 83 24
[16] Kara A, Enriquez H, Seitsonen A P, et al. 2012 Surf. Sci. Rep. 67 1
[17] Vogt P, De Padova P, Quaresima C, et al. 2012 Phys. Rev. Lett. 108 155501
[18] Yang K, Cahangirov S, Cantarero A, et al. 2014 Phys. Rev. B 89 125403
[19] Wang X, Hong Y, Chan P K, et al. 2017 Nanotechnology 28 255403
[20] Cahangirov S, Topsakal M, Aktürk E, et al. 2009 Phys. Rev. Lett. 102 236804
[21] Brogioli D and Vailati A 2000 Phys. Rev. E 63 012105
[22] Liu B, Baimova J A, Reddy C D, et al. 2014 ACS Appl. Mater. Interfaces 6 18180
[23] Liu B, Baimova J A, Reddy C D, et al. 2014 Carbon 79 236
[24] Zhou Y, Zhang X and Hu M 2015 Phys. Rev. B 92 195204
[25] Zhang X, Xie H, Hu M, et al. 2014 Phys. Rev. B 89 054310
[26] Ding K and Andersen H C 1986 Phys. Rev. B 34 6987
[27] Ethier S and Lewis L J 1992 J. Mater. Res. 7 2817
[28] Kubo R, Toda M and Hashitsume N 1991 Statistical Physics II:Nonequilibrium Statistical Mechanics (Springer-Verlag)
[29] Hu M, Zhang X and Poulikakos D 2013 Phys. Rev. B 87 195417
[30] Sääskilahti K, Oksanen J, Tulkki J, et al. 2014 Phys. Rev. B 90 134312
[31] Sääskilahti K, Oksanen J, Volz S, et al. 2015 Phys. Rev. B 91 115426
[32] Ni Y, Zhang H, Hu S, et al. 2019 Int. J. Heat Mass Transf. 144 118608
[33] Ni Y and Volz S 2021 J. Appl. Phys. 130 190901
[34] Anderson P W 1958 Phys. Rev 109 1492
[35] Lee P A and Fisher D S 1981 Phys. Rev. Lett. 47 882
[36] Zhang W, Guo Y, Xiong S Y, et al. 2023 Phys. Rev. B 108 125436
[37] Liu Y, Yue J, Liu Y, et al. 2023 Chin. Phys. Lett. 40 086301
[38] Nomura M, Anufriev R, Zhang Z, et al. 2022 Mater. Today Phys. 22 100613
[39] Ma D, Li X and Zhang L 2020 Chin. Phys. B 29 126502
[40] Nagelkerke N J 1991 Biometrika 78 691
[41] Monthus C and Garel T 2010 Phys. Rev. B 81 224208
[1] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[2] Cholesterol-induced deformation of the gramicidin A channel inhibiting potassium ion binding and transport
Pan Xiao(肖盼), Yu Cao(曹宇), Jin Zhu(朱瑾), and Qing Liang(梁清). Chin. Phys. B, 2024, 33(5): 058701.
[3] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[4] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[5] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[6] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[7] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[8] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[9] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[10] Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer
Yao Xu(徐耀), Shu-Wei Huang(黄舒伟), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2024, 33(2): 028701.
[11] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[12] Ab initio nonadiabatic molecular dynamics study on spin—orbit coupling induced spin dynamics in ferromagnetic metals
Wansong Zhu(朱万松), Zhenfa Zheng(郑镇法), Qijing Zheng(郑奇靖), and Jin Zhao(赵瑾). Chin. Phys. B, 2024, 33(1): 016301.
[13] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[14] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[15] Exploring unbinding mechanism of drugs from SERT via molecular dynamics simulation and its implication in antidepressants
Xin-Guan Tan(谭新官), Xue-Feng Liu(刘雪峰), Ming-Hui Pang(庞铭慧), Yu-Qing Wang(王雨晴), and Yun-Jie Zhao(赵蕴杰). Chin. Phys. B, 2023, 32(8): 088702.
No Suggested Reading articles found!