Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 044403    DOI: 10.1088/1674-1056/ad2a6c
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Influence of substrate effect on near-field radiative modulator based on biaxial hyperbolic materials

Ruiyi Liu(刘睿一)1, Haotuo Liu(刘皓佗)2, Yang Hu(胡杨)3, Zheng Cui(崔峥)2,†, and Xiaohu Wu(吴小虎)2,‡
1 Institute of Advanced Technology, Shandong University, Jinan 250061, China;
2 Shandong Institute of Advanced Technology, Jinan 250100, China;
3 School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer (NFRHT) in anisotropic media. Due to the strong in-plane anisotropy, natural hyperbolic materials can be used to construct near-field radiative modulators with excellent modulation effects. However, in practical applications, natural hyperbolic materials need to be deposited on the substrate, and the influence of substrate on modulation effect has not been studied yet. In this work, we investigate the influence of substrate effect on near-field radiative modulator based on α-MoO3. The results show that compared to the situation without a substrate, the presence of both lossless and lossy substrate will reduce the modulation contrast (MC) for different film thicknesses. When the real or imaginary component of the substrate permittivity increases, the mismatch of hyperbolic phonon polaritons (HPPs) weakens, resulting in a reduction in MC. By reducing the real and imaginary components of substrate permittivity, the MC can be significantly improved, reaching 4.64 for εs = 3 at t = 10 nm. This work indicates that choosing a substrate with a smaller permittivity helps to achieve a better modulation effect, and provides guidance for the application of natural hyperbolic materials in the near-field radiative modulator.
Keywords:  near-field radiative modulator      substrate effect      hyperbolic material      modulation contrast  
Received:  21 November 2023      Revised:  29 January 2024      Accepted manuscript online:  19 February 2024
PACS:  44.40.+a (Thermal radiation)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52106099), the Natural Science Foundation of Shandong Province of China (Grant No. ZR2022YQ57), and the Taishan Scholars Program.
Corresponding Authors:  Zheng Cui, Xiaohu Wu     E-mail:  zhengc@sdu.edu.cn;xiaohu.wu@iat.cn

Cite this article: 

Ruiyi Liu(刘睿一), Haotuo Liu(刘皓佗), Yang Hu(胡杨), Zheng Cui(崔峥), and Xiaohu Wu(吴小虎) Influence of substrate effect on near-field radiative modulator based on biaxial hyperbolic materials 2024 Chin. Phys. B 33 044403

[1] Polder D and Hove M 1971 Phys. Rev. B 4 3303
[2] Basu S, Zhang Z M and Fu C J 2009 Int. J. Energy Res. 33 1203
[3] Hu L, Narayanaswamy A, Chen X and Chen G 2008 Appl. Phys. Lett. 92 133106
[4] St-Gelais R, Guha B, Zhu L X, Fan S H and Lipson M 2014 Nano Lett. 14 6971
[5] Lim M, Song J, Lee S S and Lee B J 2018 Nat. Commun. 9 4302
[6] Shi K Z, Sun Y C, Chen Z Y, He N, Bao F L, Evans J and He S L 2019 Nano Lett. 19 8082
[7] Du W, Yang J, Zhang S, Iqbal N, Dang Y D, Xu J B and Ma Y G 2020 Nano Energy 78 105264
[8] Lu L, Zhang B, Ou H, Li B W, Zhou K, Song J L, Luo Z X and Cheng Q 2022 Small 18 2108032
[9] Sabbaghi P, Long L S, Ying X Y, Lambert L, Taylor S, Messner C and Wang L P 2020 J. Appl. Phys. 128 025305
[10] Zhang W B, Wang B X and Zhao C Y 2022 Int. J. Heat Mass Transf. 188 122588
[11] Song J L, Lu L, Li B W, Zhang B, Hu R, Zhou X P and Cheng Q 2020 Int. J. Heat Mass Transf. 150 119346
[12] Shi K Z, Chen Z Y, Xu X N, Evans J and He S L 2021 Adv. Mater. 33 2106097
[13] Liu H T, Yu K, Zhang K H, Ai Q, Xie M and Wu X H 2023 Int. J. Heat Mass Transf. 210 124206
[14] Zhou C L, Wu X H, Zhang Y and Yi H L 2022 Int. J. Heat Mass Transf. 183 122140
[15] Luo M G, Zhao J M, Liu L H and Antezza M 2020 Phys. Rev. B 102 024203
[16] Song J L, Cheng Q, Zhang B, Lu L, Zhou X P, Luo Z X and Hu R 2021 Rep. Prog. Phys. 84 036501
[17] Wu H H, Liu X C, Cai Y P, Cui L J and Huang Y 2022 Mater. Today Phys. 27 100825
[18] Tang L, DeSutter J and Francoeur M 2020 ACS Photonics 7 1304
[19] Zhang W B, Zhao C Y and Wang B X 2019 Phys. Rev. B 100 075425
[20] Zheng Z H and Xuan Y M 2011 Nanosc. Microsc. Therm. 15 237
[21] Hu Y, Sun Y S, Zheng Z H, Song J L, Shi K Z and Wu X H 2022 Int. J. Heat Mass Transf. 189 122666
[22] Zhang J H, Liu H T, Yang B, Hu Y, Sun Y S and Wu X H 2023 Phys. Chem. Chem. Phys. 25 1133
[23] Biehs S A, Messina R, Venkataram P S, Rodriguez A W, Cuevas J C and Ben-Abdallah P 2021 Rev. Mod. Phys. 93 025009
[24] Castillo-Lopez S G, Esquivel-Sirvent R, Villarreal C and Pirruccio G 2022 Appl. Phys. Lett. 121 201708
[25] Hajian H, Rukhlenko I D, Erçaǧlar V, Hanson G and Ozbay E 2022 Appl. Phys. Lett. 120 112204
[26] Walter L P and Francoeur M 2022 Appl. Phys. Lett. 121 182206
[27] Wen S Z, Dang C Z and Liu X L 2022 Appl. Phys. Lett. 121 071101
[28] Fang J L, Qu L, Zhang Y and Yi H L 2023 Int. J. Heat Mass Transf. 200 123515
[29] Yu Z Q, Li X P, Lee T and Iizuka H 2022 Int. J. Heat Mass Transf. 197 123339
[30] Song J, Han J, Choi M and Lee B 2022 Sol. Energy Mater. Sol. Cells 238 111556
[31] Yang Z M, Li H D, Wang Y, Chen X H and Chen J C 2022 Energy Convers. Manage. 257 115416
[32] Zhang Y S, Li K, Yang X D, Cao S W, Pang H Q, Cai Q L, Ye Q and Wu X 2022 Int. J. Thermophys. 43 1
[33] Chen F Q, Liu X J, Tian Y P, Goldsby J and Zheng Y 2022 Energies 15 1830
[34] Chen K F, Santhanam P and Fan S H 2015 Appl. Phys. Lett. 107 091106
[35] Fan D J, Burger T, McSherry S, Lee B, Lenert A and Forrest S R 2020 Nature 586 237
[36] Li L, Yu K, Feng D D, Yang Z M, Zhang K H, Liu Y F and Wu X H 2023 Phys. Rev. Appl. 20 064015
[37] Yang B and Dai Q 2022 Nanoscale 14 16978
[38] Jing L, Li Z, Salihoglu H, Liu X and Shen S 2022 Mater. Today Phys. 29 100921
[39] Landrieux S, Ben-Abdallah P and Messina R 2022 Appl. Phys. Lett. 120 143502
[40] Guclu C, Campione S and Capolino F 2011 Phys. Rev. B 86 205130
[41] Chen K F, Santhanam P and Sandhu S 2015 Phys. Rev. B 91 134301
[42] Liu X L and Zhang Z M 2016 Nano Energy 26 353
[43] van Zwol P J, Joulain K, Ben-Abdallah P, Greffet J J and Chevrier J 2011 Phys. Rev. B 83 201404
[44] Moncada-Villa E, Fernández-Hurtado V, García-Vidal F J, García-Martín A and Cuevas J C 2015 Phys. Rev. B 92 125418
[45] Shi K Z, Chen Z Y, Xing Y X, Yang J X, Xu X N, Evans J S and He S L 2022 Nano Lett. 22 7753
[46] Biehs S A, Rosa F S S and Ben-Abdallah P 2011 Appl. Phys. Lett. 98 243102
[47] Tang G M, Chen J and Zhang L 2021 ACS Photonics 8 443
[48] Zhang Y, Yi H L and Tan H P 2018 ACS Photonics 5 3739
[49] Luo M G, Zhao J M and Antezza M 2020 Appl. Phys. Lett. 117 053901
[50] He M J, Qi H, Ren Y T, Zhao Y J and Antezza M 2020 Int. J. Heat Mass Transf. 150 119305
[51] He M J, Qi H, Ren Y T, Zhao Y J and Antezza M 2020 Opt. Lett. 45 2914
[52] Liu X L, Shen J D and Xuan Y M 2017 J. Quant. Spectrosc. Radiat. Transf. 200 100
[53] Wu X H and Fu C J 2021 Int. J. Heat Mass Transf. 168 120908
[54] Li L, Wu X H, Liu H T, Shi K Z, Liu Y K and Yu K 2023 Int. J. Heat Mass Transf. 216 124603
[55] Wu X H, Fu C J and Zhang Z M 2018 J. Photon. Energy 9 032702
[56] Wu X H, Fu C J and Zhang Z M 2020 J. Heat Transf. 142 072802
[57] Ma W L, Alonso-González P, Li S J, Nikitin A Y, Yuan J, Martín-Sánchez J, Taboada-Gutiérrez J, Amenabar I, Li P N, Vélez S, Tollan C, Dai Z G, Zhang Y P, Sriram S, Kalantar-Zadeh K, Lee S T, Hillenbrand R and Bao Q L 2018 Nature 562 557
[58] Ye M, Qiang B, Zhu S, Dai M J, Wang F K, Luo Y, Wang Q and Wang Q J 2022 Adv. Opt. Mater. 10 2102096
[59] Huang J W, Tao L, Dong N N, Wang H Q, Zhou S, Wang J, He X Y and Wu K H 2023 Adv. Opt. Mater. 11 2202048
[60] Biehs S A, Ben-Abdallah P, Rosa F S S, Joulain K and Greffet J J 2011 Opt. Express 19 A1088
[61] Francoeur M, Mengüç M P and Vaillon R 2010 J. Appl. Phys. 107 034313
[62] Francoeur M, Mengüç M P and Vaillon R 2010 J. Phys. D Appl. Phys. 43 075501
[63] Francoeur M, Mengüç M P and Vaillon R 2011 Phys. Rev. B 84 075436
[64] Wu X H and Liu R Y 2020 ES Energy Environ. 10 66
[65] Wu X H and Fu C J 2021 J. Quant. Spectrosc. Radiat. Transf. 258 107337
[66] Álvarez-Pérez G, Voronin K V, Volkov V S, Alonso-González P and Nikitin A Y 2019 Phys. Rev. B 100 235408
[1] Actively tuning anisotropic light—matter interaction in biaxial hyperbolic material α-MoO3 using phase change material VO2 and graphene
Kun Zhou(周昆), Yang Hu(胡杨), Biyuan Wu(吴必园), Xiaoxing Zhong(仲晓星), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2024, 33(4): 047103.
[2] Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
Hong Liang(梁红), Haoyuan Song(宋浩元), Yubo Li(李宇博), Di Yu(于迪), and Shufang Fu(付淑芳). Chin. Phys. B, 2023, 32(12): 124212.
[3] Plasmon-phonon coupling in graphene-hyperbolic bilayer heterostructures
Ge Yin(尹格), Jun Yuan(元军), Wei Jiang(姜玮), Jianfei Zhu(朱剑飞), Yungui Ma(马云贵). Chin. Phys. B, 2016, 25(11): 114216.
[4] Growth mechanism and modification of electronic and magnetic properties of silicene
Liu Hong-Sheng (柳洪盛), Han Nan-Nan (韩楠楠), Zhao Ji-Jun (赵纪军). Chin. Phys. B, 2015, 24(8): 087303.
[5] Silicene on substrates: A theoretical perspective
Zhong Hong-Xia (钟红霞), Quhe Ru-Ge (屈贺如歌), Wang Yang-Yang (王洋洋), Shi Jun-Jie (史俊杰), Lü Jin (吕劲). Chin. Phys. B, 2015, 24(8): 087308.
No Suggested Reading articles found!