Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 035203    DOI: 10.1088/1674-1056/ad1a89
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Hollow cathode effect in radio frequency hollow electrode discharge in argon

Liu-Liang He(贺柳良)1,†, Feng He(何锋)2, and Ji-Ting Ouyang(欧阳吉庭)2
1 College of Science, Beijing University of Civil Engineering and Architecture, Beijing 102616, China;
2 School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  Radio frequency capacitively coupled plasma source (RF-CCP) with a hollow electrode can increase the electron density through the hollow cathode effect (HCE), which offers a method to modify the spatial profiles of the plasma density. In this work, the variations of the HCE in one RF period are investigated by using a two-dimensional particle-in-cell/Monte-Carlo collision (PIC/MCC) model. The results show that the sheath electric field, the sheath potential drop, the sheath thickness, the radial plasma bulk width, the electron energy distribution function (EEDF), and the average electron energy in the cavity vary in one RF period. During the hollow electrode sheath's expansion phase, the secondary electron heating and sheath oscillation heating in the cavity are gradually enhanced, and the frequency of the electron pendular motion in the cavity gradually increases, hence the HCE is gradually enhanced. However, during the hollow electrode sheath's collapse phase, the secondary electron heating is gradually attenuated. In addition, when interacting with the gradually collapsed hollow electrode sheaths, high-energy plasma bulk electrons in the cavity will lose some energy. Furthermore, the frequency of the electron pendular motion in the cavity gradually decreases. Therefore, during the hollow electrode sheath's collapse phase, the HCE is gradually attenuated.
Keywords:  hollow cathode effect      radio frequency      hollow electrode      particle-in-cell /Monte-Carlo collision (PIC/MCC) model  
Received:  09 October 2023      Revised:  20 December 2023      Accepted manuscript online:  04 January 2024
PACS:  52.20.-j (Elementary processes in plasmas)  
  52.40.Kh (Plasma sheaths)  
  52.65.-y (Plasma simulation)  
Corresponding Authors:  Liu-Liang He     E-mail:  heliuliang@bucea.edu.cn

Cite this article: 

Liu-Liang He(贺柳良), Feng He(何锋), and Ji-Ting Ouyang(欧阳吉庭) Hollow cathode effect in radio frequency hollow electrode discharge in argon 2024 Chin. Phys. B 33 035203

[1] Makabe T and Petrovic Z 2006 Plasma Electronics: Applications in Microelectronic Device Fabrication (New York: Taylor and Francis Group) pp. 2-3, ISBN: 0750309768
[2] Lieberman M A and Lichtenberg A J 2005 Principles of plasma discharges and materials processing, 2nd edn. (New York: Wiley) p. 1, ISBN: 9780471720010
[3] Ohtsu Y and Urasaki H 2010 Plasma Sources Sci. Technol. 19 045012
[4] Schmidt N, Schulze J, Scungel E and Czarnetzki U 2013 J. Phys. D: Appl. Phys. 46 505202
[5] Niikura C, Kondo M and Matsuda A 2004 J. Non-Crys. Solids 338-340 42
[6] Mussenbrock T 2015 Plasma Sources Sci. Technol. 24 024002
[7] Yang S, Zhang Y, Wang H Y, Wang S and Jiang W 2017 Phys. Plasmas 24 033504
[8] Wang L, Wen D Q, Hartmann P, Donkó Z, Derzsi A, Wang X F, Song Y H, Wang Y N and Schulze J 2020 Plasma Sources Sci. Technol. 29 105004
[9] Oberberg M, Kallhn J, Awakowicz P and Schulze J 2018 Plasma Sources Sci. Technol. 27 105018
[10] Zheng B, Fu Y, Wang K, Schuelke T and Fan Q H 2021 Plasma Sources Sci. Technol. 30 035019
[11] Wang L, Hartmann P, Donkó Z, Song Y H and Schulze J 2021 J. Vac. Sci. Technol. A 39 063004
[12] Lieberman M A, Lichtenberg A J, Kawamura E and Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011
[13] Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J and Wang Y N 2017 Plasma Sources Sci. Technol. 26 015007
[14] Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J and Wang Y N 2017 J. Phys. D: Appl. Phys. 50 495201
[15] Zhao K, Wen D Q, Liu Y X, Lieberman M A, Economou D J and Wang Y N 2019 Phys. Rev. Lett. 122 185002
[16] Lieberman M A, Booth J P, Chabert P, Rax J M and Turner M M 2002 Plasma Sources Sci. Technol. 11 283
[17] Mussenbrock T, Hemke T, Ziegler D, Brinkmann R P and Klick M 2008 Plasma Sources Sci. Technol. 17 025018
[18] Ohtsu Y and Kawasaki Y 2013 J. Appl. Phys. 113 033302
[19] Djerourou S, Djebli M and Ouchabane M 2019 Eur. Phys. J. Appl. Phys. 85 10801
[20] Ohtsu Y, Matsumoto N, Schulze J and Schuengel E 2016 Phys. Plasmas 23 033510
[21] Lee H S, Lee Y S, Seo S H and Chang H Y 2010 Appl. Phys. Lett. 97 081503
[22] Ohtsu Y, Yahata Y, Kagami J, Kawashimo Y and Takeuchi T 2013 IEEE Trans. Plasma Sci. 41 1856
[23] Lee H S, Lee Y S and Chang H Y 2012 Phys. Plasmas 19 093508
[24] Bardos L 1996 Surf. Coat. Technol. 86-87 648
[25] Bardos L, Barankova H and Berg S 1997 Surf. Coat. Technol. 97 723
[26] Kolobov V I and Tsendin L D 1995 Plasma Sources Sci. Technol. 4 551
[27] Lafleur T and Boswell R W 2012 Phys. Plasmas 19 023508
[28] He S J, Ha J, Qu Y X, Zhao K Y, Zhang B M and Li Q 2019 J. Phys. D: Appl. Phys. 52 095201
[29] Doyle S J, Lafleur T, Gibson A R, Tian P, Kushner M J and Dedrick J 2017 Plasma Sources Sci. Technol. 26 125005
[30] Zhang L Z, Zhao G M, Wang J and Han Q 2016 Phys. Plasmas 23 023508
[31] Durian J, Hartmann P, Matejcík S, Gibson A R and Donko Z 2022 Plasma Sources Sci. Technol. 31 095001
[32] Verboncoeur J P, Langdon A B and Gladd N T 1995 Comp. Phys. Commun. 87 199
[33] Vahedi V and Surendra M 1995 Comp. Phys. Commun. 87 179
[34] He F, Zhao X F, He S J and Ouyang J T 2010 Phys. Plasmas 17 033510
[35] Zhao X F, He F and Ouyang J T 2012 Phys. Lett A 376 2057
[36] He L L, He F, Ouyang J T and Dou W N 2020 Phys. Plasmas 27 123511
[37] Surendra M, Graves D B and Jellum G M 1990 Phys. Rev. A 41 1112
[38] Cramer W H 1959 J. Chem. Phys. 30 641
[39] Jiang X X, Li W P, Xu S W, He F and Chen Q 2017 Plasma Chem. Plasma Process 37 1281
[40] Liu Q, Liu Y, Samir T and Ma Z S 2014 Phys. Plasmas 21 083511
[41] Jiang X X, He F, Chen Q, Ge T and Ouyang J T 2014 Phys. Plasmas 21 033508
[1] Wave field structure and power coupling features of blue-core helicon plasma driven by various antenna geometries and frequencies
Chao Wang(王超), Jia Liu(刘佳), Lei Chang(苌磊), Ling-Feng Lu(卢凌峰), Shi-Jie Zhang(张世杰), and Fan-Tao Zhou(周帆涛). Chin. Phys. B, 2024, 33(3): 035201.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] Simultaneous detection of CH4 and CO2 through dual modulation off-axis integrated cavity output spectroscopy
Yi-Xuan Liu(刘艺璇), Zhou-Bing Wang(王周兵), Xin-Xin Wei(韦欣欣), Jing-Jing Wang(王静静), Xin Meng(孟鑫), and Gui-Lin Mao(毛桂林). Chin. Phys. B, 2023, 32(10): 104209.
[4] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[5] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[6] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[7] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[8] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
[9] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[10] Observation of nonconservation characteristics of radio frequency noise mechanism of 40-nm n-MOSFET
Jun Wang(王军), Xiao-Mei Peng(彭小梅), Zhi-Jun Liu(刘志军), Lin Wang(王林), Zhen Luo(罗震), Dan-Dan Wang(王丹丹). Chin. Phys. B, 2018, 27(2): 027201.
[11] Design and development of radio frequency output window for circular electron-positron collider klystron
Zhijun Lu(陆志军), Shigeki Fukuda, Zusheng Zhou(周祖圣), Shilun Pei(裴士伦), Shengchang Wang(王盛昌), Ouzheng Xiao(肖欧正), UnNisa Zaib, Bowen Bai(白博文), Guoxi Pei(裴国玺), Dong Dong(董东), Ningchuang Zhou(周宁闯), Shaozhe Wang(王少哲), Yunlong Chi(池云龙). Chin. Phys. B, 2018, 27(11): 118402.
[12] Compressing ultrafast electron pulse by radio frequency cavity
Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2017, 26(4): 044102.
[13] Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure
Tagra Samir, Yue Liu(刘悦), Lu-Lu Zhao(赵璐璐), Yan-Wen Zhou(周艳文). Chin. Phys. B, 2017, 26(11): 115201.
[14] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[15] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
No Suggested Reading articles found!