Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 035202    DOI: 10.1088/1674-1056/ad0b02
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Three-dimensional magnetic reconnection in complex multiple X-point configurations in an ancient solar-lunar terrestrial system

Xiang-Lei He(何向磊)1, Ao-Hua Mao(毛傲华)1,2,†, Meng-Meng Sun(孙萌萌)1, Ji-Tong Zou(邹继同)1, and Xiao-Gang Wang(王晓钢)1,2
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China;
2 Laboratory for Space Environment and Materials Science, Harbin Institute of Technology, Harbin 150001, China
Abstract  Magnetic reconnection processes in three-dimensional (3D) complex field configurations have been investigated in different magneto-plasma systems in space, laboratory, and astrophysical systems. Two-dimensional (2D) features of magnetic reconnection have been well developed and applied successfully to systems with symmetrical property, such as toroidal fusion plasmas and laboratory experiments with an axial symmetry. But in asymmetric systems, the 3D features are inevitably different from those in the 2D case. Magnetic reconnection structures in multiple celestial body systems, particularly star-planet-Moon systems, bring fresh insights to the understanding of the 3D geometry of reconnection. Thus, we take magnetic reconnection in an ancient solar-lunar terrestrial magneto-plasma system as an example by using its crucial parameters approximately estimated already and also some specific applications in pathways for energy and matter transports among Earth, ancient Moon, and the interplanetary magnetic field (IMF). Then, magnetic reconnection of the ancient lunar-terrestrial magnetospheres with the IMF is investigated numerically in this work. In a 3D simulation for the Earth-Moon-IMF system, topological features of complex magnetic reconnection configurations and dynamical characteristics of magnetic reconnection processes are studied. It is found that a coupled lunar-terrestrial magnetosphere is formed, and under various IMF orientations, multiple X-points emerge at distinct locations, showing three typical magnetic reconnection structures in such a geometry, i.e., the X-line, the triple current sheets, and the A-B null pairs. The results can conduce to further understanding of reconnection physics in 3D for plasmas in complex magnetic configurations, and also a possible mechanism for energy and matters transport in evolutions of similar astrophysical systems.
Keywords:  magnetic reconnection      multiple X-points      complex magneto-plasma system  
Received:  31 August 2023      Revised:  05 November 2023      Accepted manuscript online:  09 November 2023
PACS:  52.65.Kj (Magnetohydrodynamic and fluid equation)  
  94.30.cp (Magnetic reconnection)  
  96.12.Hg (Magnetic field and magnetism)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975087, 42261134533, and 42011530086), the National Magnetic Confinement Fusion Energy Research and Development Program of China (Grant No. 2022YFE03190400), and the Heilongjiang Touyan Innovation Team Program, China.
Corresponding Authors:  Ao-Hua Mao     E-mail:  aohuamao@hit.edu.cn

Cite this article: 

Xiang-Lei He(何向磊), Ao-Hua Mao(毛傲华), Meng-Meng Sun(孙萌萌), Ji-Tong Zou(邹继同), and Xiao-Gang Wang(王晓钢) Three-dimensional magnetic reconnection in complex multiple X-point configurations in an ancient solar-lunar terrestrial system 2024 Chin. Phys. B 33 035202

[1] Yamada M, Kulsrud R and Ji H T 2010 Rev. Mod. Phys. 82 603
[2] Biskamp D 1996 Astrophys. Space Sci. 242 165
[3] Zweibel E G and Yamada M 2009 Annu. Rev. Astron. Astrophys. 47 291
[4] Priest E R and Forbes T. 1986 J. Geophys. Res-Space Phys. 91 5579
[5] Pritchett P L 2001 J. Geophys. Res-Space Phys. 106 3783
[6] Lu Q M, Fu H S, Wang R S and Lu S 2022 Chin. Phys. B. 31 089401
[7] Comisso L and Bhattacharjee A 2016 J. Plasma Phys. 82 595820601
[8] Birn J, Drake J F, Shay M A, Rogers B N, Denton R E, Hesse M, Kuznetsova M, Ma Z W, Bhattacharjee A, Otto A and Pritchett P L 2001 J. Geophys. Res-Space Phys. 106 3715
[9] Liu Y H, Hesse M, Guo F, Daughton W, Li H, Cassak P A and Shay M A 2017 Phys. Rev. Lett. 118 085101
[10] Torbert R B, Burch J L, Phan T D, et al. 2018 Science 362 1391
[11] Burch J L, Torbert R B, Phan T D, et al. 2016 Science 352 aaf2939
[12] Lee L C and Fu Z F 1986 J. Geophys. Res-Space Phys. 91 6807
[13] Wang Z X, Wang X G, Dong J Q, Lei Y A, Long Y X, Mou Z Z and Qu W X 2007 Phys. Rev. Lett. 99 185004
[14] Pontin D I 2011 Adv. Space Res. 47 1508
[15] Guo R, Pu Z, Wang X, Xiao C and He J 2022 J J. Geophys. Res-Space Phys. 127 e2021JA030248
[16] Xiao C J, Wang X G, Pu Z Y, Ma Z W, Zhao H, Zhou G P, Wang J X, Kivelson M G, Fu S Y, Liu Z X, Zong Q G, Dunlop M W, Glassmeier K H, Lucek E, Reme H, Dandouras I and Escoubet C P 2007 Nat. Phys. 3 609
[17] Hale G E 1908 ApJ 28 315
[18] Beck R 2001 Space Sci. Rev. 99 243
[19] Zweibel E G and Heiles C 1997 Nature 385 131
[20] Lu Q M, Guo J, Lu S, Wang X Y, Slavin J A, Sun W J, Wang R S, Lin Y and Zhong J 2022 ApJ 937 1
[21] Ferrari C, Govoni F, Schindler S, Bykov A M and Rephaeli Y 2008 Space Sci. Rev. 134 93
[22] Ryu D, Schleicher D R, Treumann R A, Tsagas C G and Widrow L M 2012 Space Sci. Rev. 166 1
[23] Ji H, Yoo J, Fox W, Yamada M, Argall M, Egedal J, Liu Y H, Wilder R, Eriksson S, Daughton W, Bergstedt K, Bose S, Burch J, Torbert R, Ng J and Chen L J 2023 Space Sci. Rev. 219 76
[24] Mitchell D L, Halekas J S, Lin R P, Frey S, Hood L L, Acuña M H and Binder A 2008 Icarus 194 401
[25] Mighani S, Wang H, Shuster D L, Borlina C S, Nichols C I and Weiss B P 2020 Sci. Adv. 6 eaax0883
[26] Zharkov V N 2000 Solar System Res. 34 1
[27] Green J, Draper D, Boardsen S and Dong C 2020 Sci. Adv. 6 eabc0865
[28] Bingert S and Peter H 2011 Astron. Astrophys. 530 A112
[29] Groth C P, De Zeeuw, D L, Gombosi T I and Powell K G 2000 J. Geophys. Res-Space Phys. 105 25053
[30] Ogino T A 1986 J. Geophys. Res-Space Phys. 91 A6
[31] Tanaka T 1995 J. Geophys. Res-Space Phys. 100 A7
[32] Dorelli J C and Bhattacharjee A 2008 Phys. Plasmas 15 056504
[33] Li L 2021 AIP Adv. 4 11
[34] Cranmer S R 2017 ApJ 840 114
[35] Gold T 1959 J. Geophys. Res. 64 1219
[36] Parker E N 1957 J. Geophys. Res. 62 509
[37] Petschek H E 1964 NASA Spec Publ. 425
[38] Dahlburg R B and Karpen J T 1995 J. Geophys. Res-Space Phys. 100 A12
[39] Wei L, Yu F and Wang Z X 2020 Phys. Plasmas 27 012103
[40] Xiao C J, Wang X G, Pu Z Y, Zhao H, Wang J X, Ma Z W, Fu S Y, Kivelson M G, Liu Z X, Zong Q G, Glassmeier K H, Balogh A, Korth A, Reme H and Escoubet C P 2006 Nat. Phys. 2 478
[41] Xiao C J, Wang X G, Pu Z Y, Ma Z W, Zhao H, Zhou G P, Wang J X, Kivelson M G, Fu S Y, Liu Z X, Zong Q G, Dunlop M W, Glassmeier K H, Lucek E, Reme H, Dandouras I and Escoubet C P 2007 Nat. Phys. 3 609
[42] Lau Y T and Finn J M 1990 ApJ 350 672
[43] Greene J M 1988 J. Geophys. Res-Space Phys. 93 8583
[44] Gastine T, Wicht J, Duarte L D V, Heimpel M and Becker A 2014 Geophys. Res. Lett. 41 5410
[45] Acuña M H, Ness N F and Connerney J E P 1980 J. Geophys. Res-Space Phys. 85 5675
[46] Jia X, Kivelson M G, Khurana K K and Walker R J 2010 Space Sci. Rev. 152 271
[1] Particle-in-cell simulations of low-β magnetic reconnection driven by laser interaction with a capacitor-coil target
Xiaoxia Yuan(原晓霞), Cangtao Zhou(周沧涛), Hua Zhang(张华), Ran Li(李然), Yongli Ping(平永利), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2023, 32(5): 054101.
[2] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[3] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[4] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[5] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[6] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[7] Formation of electron depletion layer and parallel electric field in the separatrix region of anti-parallel magnetic reconnection
Zisheng Li(李子圣), Huanyu Wang(王焕宇), Xinliang Gao(高新亮). Chin. Phys. B, 2019, 28(7): 075203.
[8] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[9] Out-of-plane shear flow effects on fast magnetic reconnection in a two-dimensional hybrid simulation model
Wang Lin (王琳), Wang Xian-Qu (王先驱), Wang Xiao-Gang (王晓钢), Liu Yue (刘悦). Chin. Phys. B, 2014, 23(2): 025203.
No Suggested Reading articles found!