|
|
Coercivity mechanism of La-Nd-Fe-B films with Y spacer layer |
Jun Ma(马俊)1,2, Xiao-Tian Zhao(赵晓天)1,†, Wei Liu(刘伟)1,‡, Yang Li(李阳)1,2, Long Liu(刘龙)1,2, Xin-Guo Zhao(赵新国)1, and Zhi-Dong Zhang(张志东)1 |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
|
Abstract The effect of the Y spacer layer on the phase composition, coercivity, and magnetization reversal processes of La-Nd-Fe-B films has been investigated. The addition of a 10 nm Y spacer layer increases the coercivity of the film to 1.36 T at 300 K and remains 0.938 T at 380 K. As the thickness of the Y spacer layer increases, Y participates in the formation of the main phase in the film, and further regulates the formation of La-B phases. The results of the first-order reversal curve (FORC) and micromagnetic fitting show that the coercivity of all the films is dominated by nucleation mechanism. The c-axis preferred orientation, good magnetic microstructure parameters and the largest dipole interaction enhance the coercivity. Therefore, the introduction of the Y spacer layer can be an effective way to improve the coercivity of La-Nd-Fe-B film over a wide temperature range of 150 K-380 K.
|
Received: 17 November 2023
Revised: 31 December 2023
Accepted manuscript online: 11 January 2024
|
PACS:
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.50.Vv
|
(High coercivity materials)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3500303) and the National Natural Science Foundation of China (Grant Nos. 52031014 and 51971219). |
Corresponding Authors:
Xiao-Tian Zhao, Wei Liu
E-mail: xtzhao@imr.ac.cn;wliu@imr.ac.cn
|
Cite this article:
Jun Ma(马俊), Xiao-Tian Zhao(赵晓天), Wei Liu(刘伟), Yang Li(李阳), Long Liu(刘龙), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东) Coercivity mechanism of La-Nd-Fe-B films with Y spacer layer 2024 Chin. Phys. B 33 037507
|
[1] Rodewald W, Wall B, Katter M and Uestuener K 2002 IEEE Trans. Magn. 38 2955 [2] Sugimoto S 2011 J. Phys. D. Appl. Phys. 44 064001 [3] Coey J M D 2012 Scr. Mater. 67 524 [4] Jin J, Ma T, Zhang Y, Bai G and Yan M 2016 Sci. Rep. 6 32200 [5] Fan X, Ding G, Chen K, Guo S, You C, Chen R, Lee D and Yan A 2018 Acta Mater. 154 343 [6] Yan M, Jin J and Ma T 2019 Chin. Phys. B 28 077507 [7] Liu Y, Jin J, Ma T, Peng B, Wang X and Yan M 2021 J. Mater. Sci. Technol. 62 195 [8] Hirosawa S, Matsuura Y, Yamamoto H and Fujimura S 1986 J. Appl. Phys. 59 873 [9] Fan X, Chen K, Guo S, Chen R, Lee D, Yan A and You C 2017 Appl. Phys. Lett. 110 172405 [10] Zhang C H, Luo Y, Yu D B, Quan N T, Wu G Y, Dou Y K, Hu Z and Wang Z L 2020 Rare Met. 39 55 [11] Cui W B, Takahashi Y K and Hono K 2011 Acta Mater. 59 7768 [12] Ye Z X, Zhao X T, Liu W, Liu L, Wu J X, Li Y, Ma J, Ju H Z, Song Y H and Zhang Z D 2023 Surfaces and Interfaces 37 102697 [13] Cui W B, Sepehri-Amin H, Takahashi Y K and Hono K 2015 Acta Mater. 84 405 [14] Dempsey N M, Woodcock T G, Sepehri-Amin H, Zhang Y, Kennedy H, Givord D, Hono K and Gutfleisch O 2013 Acta Mater. 61 4920 [15] Li Z, Liu W, Zha S, Li Y, Wang Y, Zhang D, Yue M and Zhang J 2015 J. Rare Earths 33 961 [16] Liu L, Liu W, Song Y H, Zhao X T, Chang Y, Li S K, Liang Y M, Li Y, Zhao X G and Zhang Z D 2019 J. Phys. D: Appl. Phys. 52 145001 [17] Liu X B, Altounian Z, Huang M, Zhang Q and Liu J P 2013 J. Alloys Compd. 549 366 [18] Ding G, Liao S, Di J, Zheng B, Guo S, Chen R and Yan A 2020 Acta Mater. 194 547 [19] Hadjipanayis G C, Tao Y F and Gudimetta K 1985 Appl. Phys. Lett. 47 757 [20] Kwon A R, Fähler S, Neu V and Schultz L 2006 J. Magn. Magn. Mater. 302 252 [21] Li Y, Zhao X T, Liu W, Ma J, Liu L, Song Y H, Zhao X G and Zhang Z D 2021 J. Magn. Magn. Mater. 540 168435 [22] Jin J, Zhang Y, Bai G, Qian Z, Wu C, Ma T, Shen B and Yan M 2016 Sci. Rep. 6 30194 [23] Kronmüller H, Durst K D and Sagawa M 1988 J. Magn. Magn. Mater. 74 291 [24] Kronmüller H and Schrefl T 1994 J. Magn. Magn. Mater. 129 66 [25] Kou X C, Kronmüller H, Givord D and Rossignol M F 1994 Phys. Rev. B 50 3849 [26] Pike C R, Ross C A, Scalettar R T and Zimanyi G 2005 Phys. Rev. B 71 134407 [27] Alikhani M, Ramazani A, Almasi Kashi M, Samanifar S and Montazer A H 2016 J. Magn. Magn. Mater. 414 158 [28] Pike C R, Roberts A P and Verosub K L 1999 J. Appl. Phys. 85 6660 [29] Davies J E, Hellwig O, Fullerton E E, Denbeaux G, Kortright J B and Liu K 2004 Phys. Rev. B 70 224434 [30] Ma J, Zhao X, Liu W, Li Y, Liu L, Song Y, Xie Y, Zhao X and Zhang Z 2021 Materials 14 4680 [31] Gilbert D A, Zimanyi G T, Dumas R K, Winklhofer M, Gomez A, Eibagi N, Vicent J L and Liu K 2014 Sci. Rep. 4 4204 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|