Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 078506    DOI: 10.1088/1674-1056/acad69
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Method of simulating hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink

Min-Hui Ji(冀敏慧)1, Xin-Miao Zhang(张欣苗)1, Meng-Chun Pan(潘孟春)1, Qing-Fa Du(杜青法)1, Yue-Guo Hu(胡悦国)1, Jia-Fei Hu(胡佳飞)1, Wei-Cheng Qiu(邱伟成)1, Jun-Ping Peng(彭俊平)1, Zhu Lin(林珠)2, and Pei-Sen Li(李裴森)1,†
1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
2 Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
Abstract  The spin-transfer-torque (STT) magnetic tunneling junction (MTJ) device is one of the prominent candidates for spintronic logic circuit and neuromorphic computing. Therefore, building a simulation framework of hybrid STT-MTJ/CMOS (complementary metal-oxide-semiconductor) circuits is of great value for designing a new kind of computing paradigm based on the spintronic devices. In this work, we develop a simulation framework of hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink, which is mainly composed of a physics-based STT-MTJ model, a controlled resistor, and a current sensor. In the proposed framework, the STT-MTJ model, based on the Landau-Lifshitz-Gilbert-Slonczewsk (LLGS) equation, is implemented using the MATLAB script. The proposed simulation framework is modularized design, with the advantage of simple-to-use and easy-to-expand. To prove the effectiveness of the proposed framework, the STT-MTJ model is benchmarked with experimental results. Furthermore, the pre-charge sense amplifier (PCSA) circuit consisting of two STT-MTJ devices is validated and the electrical coupling of two spin-torque oscillators is simulated. The results demonstrate the effectiveness of our simulation framework.
Keywords:  magnetic tunneling junction (MTJ) model      spin-transfer-torque (STT)      circuit simulation      MATLAB/Simulink  
Received:  25 October 2022      Revised:  16 December 2022      Accepted manuscript online:  21 December 2022
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62004223), the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2022RC1094), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF202012), and the Hunan Provincial Science Innovation Project for Postgraduate, China (Grant No. CX20210086).
Corresponding Authors:  Pei-Sen Li     E-mail:  lpsen@nudt.edu.cn

Cite this article: 

Min-Hui Ji(冀敏慧), Xin-Miao Zhang(张欣苗), Meng-Chun Pan(潘孟春), Qing-Fa Du(杜青法), Yue-Guo Hu(胡悦国), Jia-Fei Hu(胡佳飞), Wei-Cheng Qiu(邱伟成), Jun-Ping Peng(彭俊平), Zhu Lin(林珠), and Pei-Sen Li(李裴森) Method of simulating hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink 2023 Chin. Phys. B 32 078506

[1] Finocchio G, Di Ventra M, Camsari K Y, Everschor-Sitte K, Khalili A P and Zeng Z M 2021 J. Magn. Magn. Mater. 521 167506
[2] Grollier J, Querlioz D and Stiles M D 2016 Proc. IEEE 104 2024
[3] Yogendra K, Fan D, Jung B and Roy K 2016 IEEE T. Electron Dev. 63 1674
[4] Yogendra K, Liyanagedera C, Fan D, Shim Y and Roy K 2017 ACM J. Emerg. Technol. Comput. Sys. 13 56
[5] Apalkov D, Dieny B and Slaughter J M 2016 Proc. IEEE 104 1796
[6] Oh I Y, Park S Y, Kang D H and Park C S 2014 IEEE Microw. Wirel. Compon. Lett. 24 502
[7] Fang B, Carpentieri M, Hao X, Jiang H, Katine J A, Krivorotov I N, Ocker B, Langer J, Wang K L, Zhang B, Azzerboni B, Amiri P K, Finocchio G and Zeng Z M 2016 Nat. Commun. 7 11259
[8] Yin X L, Yang Y, Liu Y F, Hua J, Sokolov A, Ewing D, De R P J, Gao K Z and Liou S H 2019 Spintronics XII (San Diego) p. 110903H
[9] Atsufumi H, Keisuke Y, Yoshinobu N, Ioan L P, Bernard D, Philipp P and Burkard H 2020 J. Magn. Magn. Mater. 509 166711
[10] Locatelli N, Cros V and Grollier J 2014 Nat. Mater. 13 11
[11] Mazza L, Puliafito V, Raimondo E, Giordano A, Zeng Z, Carpentieri M and Finocchio G 2022 Phys. Rev. Appl. 17 014045
[12] Sengupta A, Panda P, Wijesinghe P, Kim Y and Roy K 2016 Sci. Rep. 6 30039
[13] Romera M, Talatchian P, Tsunegi S, Yakushiji K, Fukushima A, Kubota H, Yuasa S, Cros V, Bortolotti P, Ernoult M, Querlioz D and Grollier J 2022 Nat. Commun. 13 883
[14] Joshi V K, Barla P, Bhat S and Kaushik B K 2020 IEEE Access 8 194105
[15] Zhang Y, Zhao W S, Lakys Y, Klein J O, Kim J V, Ravelosona D and Chappert C 2012 IEEE T. Electron Dev. 59 819
[16] Yang S, Wei F and Hao Y 2012 17th Asia and South Pacific Design Automation Conference 2012, January 30-February 2, Sydney, NSW, Australia, p. 529
[17] Panagopoulos G D, Augustine C and Roy K 2013 IEEE T. Electron Dev. 60 2808
[18] Kazemi M, Ipek E and Friedman E G 2014 IEEE T. Electron Dev. 61 3883
[19] Li Q Y, Zhang P H and Li H T 2021 Chin. Phys. B 30 047504
[20] Hu X T A, Brigner W H, Incorvia J A C and Friedman J S 2019 IEEE T. Electron Dev. 66 2817
[21] Fernando G R, Pranay P, Mudit D and Cyrille D 2021 SMACD/PRIME 2021 International Conference on SMACD and 16th Conference on PRIME, July 19-22 online p. 1
[22] Wang Y, Cai H, Naviner L A B, Zhang Y, Klein J O and Zhao W S 2015 Microelectron Reliab. 55 1649
[23] György C, Matt P, Dmitri E N, George I B, Andras H, Tamas R and Wolfgang P 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications, August 29-31, Turin, Italy, p. 1
[24] Csaba G and Porod W 2020 Phys. Rev. Appl. 7 011302
[25] Leroux N, Mizrahi A, Marković1 D, Sanz-Hernández D, Trastoy J, Bortolotti P, Martins L, Jenkins A, Ferreira R and Grollier J 2021 Neuromorph. Comput. Eng. 1 011001
[26] Miwa S, Ishibashi S, Tomita H, Nozaki T, Tamura E, Ando K, Mizuochi N, Saruya T, Kubota H, Yakushiji K, Taniguchi T, Imamura H, Fukushima A, Yuasa S and Suzuki Y 2014 Nat. Mater. 13 50
[27] Zhang S, Levy P M, Marley A C and Parkin S S P 1997 Phys. Rev. Lett. 79 3744
[28] Jiang X, A Zang W and Mark D S 2005 Phys. Rev. B 72 014446
[29] NIST OOMMF userguide, 2018
[30] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[31] Zhang X, Ezawa M, Xiao D, Zhao G. P, Liu Y and Zhou Y 2015 Nanotechnology 26 225701
[32] Osborn J A 1945 Phys. Rev. 67 351
[33] Zeng Z M, Finocchio G, Zhang B, Khalili A P, Katine J A, Krivorotov I N, Huai Y, Langer J, Azzerboni B, Wang K L and Jiang H 2013 Sci. Rep. 3 1426
[34] Zhao W S, Chappert C, Javerliac V and Noziere J P 2009 IEEE Trans. Magn. 45 3784
[35] 90 nm BSIM4 model card for bulk CMOS.
[1] Dynamical analysis and circuit simulation of a new three-dimensional chaotic system
Wang Ai-Yuan (王爱元), Ling Zhi-Hao (凌志浩). Chin. Phys. B, 2010, 19(7): 070506.
[2] Implementation of a novel two-attractor grid multi-scroll chaotic system
Luo Xiao-Hua(罗小华), Tu Zheng-Wei(涂正伟), Liu Xi-Rui(刘希瑞), Cai Chang(蔡昌), Liang Yi-Long(梁亦龙), and Gong Pu(龚璞). Chin. Phys. B, 2010, 19(7): 070510.
[3] Chaos in fractional-order generalized Lorenz system and its synchronization circuit simulation
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping (杨世平). Chin. Phys. B, 2009, 18(8): 3295-3302.
[4] Realization of fractional-order Liu chaotic system by a new circuit unit
Xu Zhe (许喆), Liu Chong-Xin (刘崇新). Chin. Phys. B, 2008, 17(11): 4033-4038.
[5] Realization of fractional-order Liu chaotic system by circuit
Lu Jun-Jie(逯俊杰) and Liu Chong-Xin(刘崇新). Chin. Phys. B, 2007, 16(6): 1586-1590.
No Suggested Reading articles found!