CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition |
Renxiang Cheng(程任翔)1,2, Miao Yu(于苗)1, Hong Wang(汪洪)1, Deliang Cao(曹德亮)1, Xingao Li(李兴鳌)1,†, Fenghua Qi(戚凤华)3,‡, and Xingfei Zhou(周兴飞)1,§ |
1 New Energy Technology Engineering Laboratory of Jiangsu Province, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 School of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China; 3 School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China |
|
|
Abstract We investigate the chiral edge states-induced Josephson current-phase relation in a graphene-based Josephson junction modulated by the off-resonant circularly polarized light and the staggered sublattice potential. By solving the Bogoliubov-de Gennes equation, a $\varphi_{0}$ Josephson junction is induced in the coaction of the off-resonant circularly polarized light and the staggered sublattice potential, which arises from the fact that the center of-mass wave vector of Cooper pair becomes finite and the opposite center of-mass wave vector to compensate is lacking in the nonsuperconducting region. Interestingly, when the direction of polarization of light is changed, $-\varphi_{0}$ to $\varphi_{0}$ transition generates, which generalizes the concept of traditional $0$-$\pi$ transition. Our findings provide a purely optical way to manipulate a phase-controllable Josephson device and guidelines for future experiments to confirm the presence of graphene-based $\varphi_{0}$ Josephson junction.
|
Received: 13 July 2023
Revised: 08 September 2023
Accepted manuscript online: 19 October 2023
|
PACS:
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
85.25.-j
|
(Superconducting devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104232, 11805103, and 11804167), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20190137 and BK20180739), the Fundamental Research Funds for the Central Universities (Grant Nos. 020414380195 and B230201042), the Jit-b Project (Grant No. 201831), and the Natural Science Fund of Nanjing University of Posts and Telecommunications (Grant No. NY222163). |
Corresponding Authors:
Xingao Li, Fenghua Qi, Xingfei Zhou
E-mail: lixa@njupt.edu.cn;qifenghua@njxzc.edu.cn;zxf@njupt.edu.cn
|
Cite this article:
Renxiang Cheng(程任翔), Miao Yu(于苗), Hong Wang(汪洪), Deliang Cao(曹德亮), Xingao Li(李兴鳌), Fenghua Qi(戚凤华), and Xingfei Zhou(周兴飞) Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition 2024 Chin. Phys. B 33 027302
|
[1] Wallace P R 1947 Phys. Rev. 71 622 [2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [4] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620 [5] Zeb M A, Sabeeh K and Tahir M 2008 Phys. Rev. B 78 165420 [6] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807 [7] Rozhkov A, Giavaras G, Bliokh Y P, Freilikher V and Nori F 2011 Phys. Rep. 503 77 [8] Zhou X, Wu Z, Bai Y, Wang Q, Zhu Z, Yan W and Xu Y 2022 Chin. Phys. B 31 047301 [9] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [10] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007 [11] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 [12] Qiao Z, Tse W K, Jiang H, Yao Y and Niu Q 2011 Phys. Rev. Lett. 107 256801 [13] Zhai X and Jin G 2014 Phys. Rev. B 89 235416 [14] Wang W, Lü X and Xie H 2021 Chin. Phys. B 30 066701 [15] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 [16] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [17] Tarnopolsky G, Kruchkov A J and Vishwanath A 2019 Phys. Rev. Lett. 122 106405 [18] Yankowitz M, Chen S, Polshyn H, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 11059 [19] García de Abajo F J 2013 Science 339 917 [20] Koppens F, Mueller T, Avouris P, Ferrari A, Vitiello M and Polini M 2014 Nat. Nanotechnol. 9 780 [21] Wolf E L 2014 Graphene: A New Paradigm in Condensed Matter and Device Physics (Oxford: Oxford University Press) [22] Young A F and Kim P 2011 Annual Review of Condensed Matter Physics 2 101 [23] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430 [24] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [25] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [26] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [27] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 [28] Carvalho A, Wang M, Zhu X, Rodin A S, Su H and Castro Neto A H 2016 Nat. Rev. Mater. 1 16061 [29] Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P and Rao C N R 2013 ACS Nano 7 4879 [30] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263 [31] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [32] Josephson B D 1962 Phys. Lett. 1 251 [33] Anderson P W and Rowell J M 1963 Phys. Rev. Lett. 10 230 [34] Ryazanov V V, Oboznov V A, Rusanov A Yu, Veretennikov A V, Golubov A A and Aarts J 2001 Phys. Rev. Lett. 86 2427 [35] Buzdin A I 2005 Rev. Mod. Phys. 77 935 [36] Yamashita T, Tanikawa K, Takahashi S and Maekawa S 2005 Phys. Rev. Lett. 95 097001 [37] Yokoyama T, Eto M and Nazarov Y V 2014 Phys. Rev. B 89 195407 [38] Nesterov K N, Houzet M and Meyer J S 2016 Phys. Rev. B 93 174502 [39] Dolcini F, Houzet M and Meyer J S 2015 Phys. Rev. B 92 035428 [40] Wang J, Hao L and Liu J F 2016 Phys. Rev. B 93 155405 [41] Alidoust M and Hamzehpour H 2017 Phys. Rev. B 96 165422 [42] Zhou X and Jin G 2107 Phys. Rev. B 95 195419 [43] Assouline A, Feuillet-Palma C, Bergeal N, Zhang T, Mottaghizadeh A, Zimmers A, Lhuillier E, Eddrie M, Atkinson P, Aprili M and Aubin H 2019 Nat. Commun. 10 126 [44] Xu Y, Fu P H, Chen L, Liu J F, Wang J and Xu H 2022 Phys. Rev. B 105 075409 [45] Padurariu C and Nazarov Y V 2010 Phys. Rev. B 81 144519 [46] Reynoso A A, Usaj G, Balseiro C A, Feinberg D and Avignon M 2012 Phys. Rev. B 86 214519 [47] Gingrich E C, Niedzielski B M, Glick J A, Wang Y, Miller D L, Loloee R, Pratt Jr W P and Birge N O 2016 Nat. Phys. 12 564 [48] Strambini E, Iorio A, Durante O, Citro R, Sanz-Fernández C, Guarcello C, Tokatly I V, Braggio A, Rocci M, Ligato N, Zannier V, Sorba L, Bergeret F S and Giazotto F 2020 Nat. Nanotechnol. 15 656 [49] Titov M and Beenakker C W J 2006 Phys. Rev. B 74 041401 [50] Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56 [51] Linder J, Yokoyama T, Huertas-Hernando D and Sudbo A 2008 Phys. Rev. Lett. 100 187004 [52] Jeong D, Choi J H, Lee G H, Jo S, Doh Y J and Lee H J 2011 Phys. Rev. B 83 094503 [53] Wei Y J, Liu H L, Wang J and Liu J F 2022 Phys. Rev. B 106 165419 [54] Xie Y M, Efetov D K and Law K T 2022 Phys. Rev. Res. 5 023029 [55] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108 [56] McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38 [57] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423 [58] Xu Y and Jin G 2017 Phys. Rev. B 95 155425 [59] Beenakker C W J 1991 Phys. Rev. Lett. 67 3836 [60] nnunziata G, Enoksen H, Linder J, Cuoco M, Noce C and Sudbo A 2011 Phys. Rev. B 83 144520 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|