Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 025202    DOI: 10.1088/1674-1056/ad1093
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Long radial coherence of electron temperature fluctuations in non-local transport in HL-2A plasmas

Zhongbing Shi(石中兵)1,†, Kairui Fang(方凯锐)1, Jingchun Li(李景春)2,3, Xiaolan Zou(邹晓岚)4, Zhaoyang Lu(卢兆旸)2, Jie Wen(闻杰)1, Zhanhui Wang(王占辉)1, Xuantong Ding(丁玄同)1, Wei Chen(陈伟)1, Zengchen Yang(杨曾辰)1, Min Jiang(蒋敏)1, Xiaoquan Ji(季小全)1, Ruihai Tong(佟瑞海)1, Yonggao Li(李永高)1, Peiwan Shi(施陪万)1, Wulyv Zhong(钟武律)1, and Min Xu(许敏)1
1 Southwestern Institute of Physics, Chengdu 610041, China;
2 Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, China;
3 Shenzhen Key Laboratory of Nuclear and Radiation Safety, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
4 CEA, IRFM, Saint-Paul-lez-Durance 13108, France
Abstract  The dynamics of long-wavelength ($k_\theta<1.4$ cm$^{-1}$), broadband (20 kHz-200 kHz) electron temperature fluctuations ($\tilde T_{\rm e}/T_{\rm e}$) of plasmas in gas-puff experiments are observed for the first time in HL-2A tokamak. In a relatively low density ($n_{\rm e}(0) \simeq 0.91 \times10^{19}$$\rm m^{-3}$-$1.20 \times10^{19}$$\rm m^{-3}$) scenario, after gas-puffing the core temperature increases and the edge temperature drops. On the contrary, temperature fluctuation drops at the core and increases at the edge. Analyses show the non-local emergence is accompanied with a long radial coherent length of turbulent fluctuations. While in a higher density ($n_{\rm e}(0) \simeq 1.83 \times10^{19}$ m$^{-3}$-$2.02 \times10^{19}$ m$^{-3}$) scenario, the phenomena are not observed. Furthermore, compelling evidence indicates that $\bm{E} \times \bm{B}$ shear serves as a substantial contributor to this extensive radial interaction. This finding offers a direct explanatory link to the intriguing core-heating phenomenon witnessed within the realm of non-local transport.
Keywords:  nuclear fusion      non-local transport      tokamak      gas-puffing  
Received:  10 October 2023      Revised:  08 November 2023      Accepted manuscript online:  29 November 2023
PACS:  52.25.Xz (Magnetized plasmas)  
  52.35.Ra (Plasma turbulence)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0301203), the Innovation Program of Southwestern Institute of Physics (Grant No. 202301XWCX001), the Sichuan Science and Technology Program (Grant Nos. 2023ZYD0014 and 2021YFSY0044), the National Natural Science Foundation of China (Grant No. 12175055), and the Shenzhen Municipal Collaborative Innovation Technology ProgramInternational Science and Technology Cooperation Project (Grant No. GJHZ20220913142609017)
Corresponding Authors:  Zhongbing Shi     E-mail:  shizb@swip.ac.cn

Cite this article: 

Zhongbing Shi(石中兵), Kairui Fang(方凯锐), Jingchun Li(李景春), Xiaolan Zou(邹晓岚), Zhaoyang Lu(卢兆旸), Jie Wen(闻杰), Zhanhui Wang(王占辉), Xuantong Ding(丁玄同), Wei Chen(陈伟), Zengchen Yang(杨曾辰), Min Jiang(蒋敏), Xiaoquan Ji(季小全), Ruihai Tong(佟瑞海), Yonggao Li(李永高), Peiwan Shi(施陪万), Wulyv Zhong(钟武律), and Min Xu(许敏) Long radial coherence of electron temperature fluctuations in non-local transport in HL-2A plasmas 2024 Chin. Phys. B 33 025202

[1] Kissick M W, Fredrickson E D, Callen J D, Bush C E, Chang Z, Efthimion P C, Hulse R A, Mansfield D K, Park H K, Schivell J F and Scott S D 1994 Nucl. Fusion 34 349
[2] Gentle K W, Rowan W L, Bravenec R V, Cima G, Crowley T P, Gasquet H, Hallock G A, Heard J, Ouroua A, Phillips P E and Ross D W 1995 Phys. Rev. Lett. 74 3620
[3] Shi Y, Chen Z, Yang Z, Shi P, Zhao K, Diamond P H, Kwon J, Yan W, Zhou H, Pan X and Cheng Z 2018 Nucl. Fusion 58 044002
[4] Galli P, Gorini G, Mantica P, Hogeweij G M, De Kloe J, Cardozo N L and RTP team 1999 Nucl. Fusion 39 1355
[5] Mantica P, Galli P, Gorini G, Hogeweij G M, De Kloe J, Cardozo N L and RTP Team 1999 Phys. Rev. Lett. 82 5048
[6] Sun H J, Ding X T, Yao L H, et al. 2007 Chin. Phys. Lett. 24 2621
[7] Rice J E, Gao C, Reinke M L, Diamond P H, Howard N T, Sun H J, Cziegler I, Hubbard A E, Podpaly Y A, Rowan W L and Terry J L 2013 Nucl. Fusion 53 033004
[8] Shi Y J, Kwon J M, Diamond P H, Ko W H, Choi M J, Ko S H, Hahn S H, Na D H, Leem J E, Lee J A and Yang S M 2017 Nucl. Fusion 57 066040
[9] Liu Y, Shi Y, Zhang T, Zhou C, Zou X, Zhao H, Liu A, Zhou T, Liu X, Zhang S and Cao B 2019 Nucl. Fusion 59 044005
[10] Zou X L, Geraud A, Gomez P, Mattioli M, Segui J L, Clairet F, De Michelis C, Devynck P, de Wit T D, Erba M and Fenzi C 2000 Plasma Phys. Control. Fusion 42 1067
[11] Gorini G, Joffrin E, Mantica P, Sarazin Y, Challis C D, Coffey I, Kinsey J E, Litaudon X, Sozzi C, Walden A and Zastrow K D 2001 28th EPS Conference on Controlled Fusion and Plasma Physics 25A 497
[12] Ryter F, Neu R, Dux R, Fahrbach H U, Leuterer F, Pereverzev G, Schweinzer J, Stober J, Suttrop W, De Luca F and Jacchia A 2000 Nucl. Fusion 40 1917
[13] Rodriguez-Fernandez P, White A E, Howard N T, Grierson B A, Zeng L, Yuan X, Staebler G M, Austin M E, Odstrcil T, Rhodes T L and Sciortino F 2019 Phys. Plasmas 26 062503
[14] Stroth U, Giannone L, Hartfuss H J, ECH group and W7-AS team 1996 Plasma Phys. Control. Fusion 38 611
[15] Inagaki S, Tamura N, Tokuzawa T, Ida K, Itoh K, Neudatchin S V, Tanaka K, Nagayama Y, Kawahata K, Yakovlev M and Sudo S 2006 Plasma Phys. Control. Fusion 48 A251
[16] Ida K, Shi Z, Sun H J, Inagaki S, Kamiya K, Rice J E, Tamura N, Diamond P H, Dif-Pradalier G, Zou X L and Itoh K 2015 Nucl. Fusion 55 013022
[17] Inagaki S, Tokuzawa T, Tamura N, Itoh S I, Kobayashi T, Ida K, Shimozuma T, Kubo S, Tanaka K, Ido T and Shimizu A 2013 Nucl. Fusion 53 113006
[18] Hahm T S, Diamond P H, Lin Z, Itoh K and Itoh S I 2004 Plasma Phys. Control. Fusion 46 A323
[19] Gurcan O D, Diamond P H, Hahm T S and Lin Z 2005 Phys. Plasmas 12 032303
[20] Lin Z and Hahm T S 2004 Phys. Plasmas 11 1099
[21] Wang Z H, Diamond P H, Gurcan O D, Garbet X and Wang X G 2011 Nucl. Fusion 51 073009
[22] Hariri F, Naulin V, Juul Rasmussen J, Xu G S and Yan N 2016 Phys. Plasmas 23 052512
[23] Diamond P H and Hahm T S 1995 Phys. Plasmas 2 3640
[24] Kubota T, Iwasaki T, Itoh S I, Yagi M, Fukuyama A and Stroth U 1997 24th EPS Conference on Controlled Fusion and Plasma Physics 1769
[25] Wang Z H, Diamond P H, Gurcan O D, Garbet X and Wang X G 2011 Phys. Plasmas 18 032306
[26] Chen W, Xu Y, Ding X T, Shi Z B, Jiang M, Zhong W L and Ji X Q 2016 Nucl. Fusion 56 044001
[27] Gao C, Rice J E, Sun H J, Reinke M L, Howard N T, Mikkelson D, Hubbard A E, Chilenski M A, Walk J R, Hughes J W and Ennever P C 2014 Nucl. Fusion 54 083025
[28] Mantica P, Gorini G, Hogeweij G M, Cardozo N L and Schilham A M 2000 Phys. Rev. Lett. 85 4534
[29] Shi Y, Yang Z, Chen Z, Cheng Z, Zhang X, Yan W, Wen J, Cai Q, Zhao K, Hong S and Kwon J 2020 Nucl. Fusion 60 064002
[30] Rodriguez-Fernandez P, White A E, Howard N T, Grierson B A, Staebler G M, Rice J E, Yuan X, Cao N M, Creely A J, Greenwald M J and Hubbard A E 2018 Phys. Rev. Lett. 120 075001
[31] Angioni C, Fable E, Ryter F, Rodriguez-Fernandez P, Putterich T and ASDEX Upgrade Team 2019 Nucl. Fusion 59 106007
[32] Li J C, Liu S F, Kong W, Guo S C and Dong J Q 2019 Europhys. Lett. 127 45002
[33] Li J, Lin Z, Dong J, Xie H and Liu S 2021 Plasma Phys. Control. Fusion 63 125005
[34] Li J, Xu J Q, Qu Y R, Lin Z, Dong J Q, Peng X D and Li J Q 2023 Nucl. Fusion 63 096005
[35] Fang K R, Shi Z B, Yang Z C, Jiang M, Zhong W L, Wen J, Shi P W, Li Y G, Liu Z T, Liu Y and Ding X T 2019 Rev. Sci. Instrum. 90 063503
[36] Liu D, Zhou C, Cao Z, Yan J, Liu Y and the HL-2A team 2003 Fusion Eng. Des. 66 147
[37] Sun H J, Ding X T, Yao L H, Rao J, Liu Z T, Liu Y, Huang Y, Dong C F, Li W, Duan X R and Yan Q W 2008 J. Phys.: Conf. Ser. 123 012016
[38] Shi Z, Zhong W and Jiang M 2018 Plasma Sci. Technol. 20 094007
[39] Li Y G, Zhou Y, Li Y, Deng Z C, Wang H X and Yi J 2017 Rev. Sci. Instrum. 88 083508
[40] Greenwald M, Terry J L, Wolfe S M, Ejima S, Bell M G, Kaye S M and Neilson G H 1988 Nucl. Fusion 28 2199
[41] Creely A J, Freethy S J, Burke W M, Conway G D, Leccacorvi R, Parkin W C, Terry D R and White A E 2018 Rev. Sci. Instrum. 89 053503
[42] Inagaki S, Tokuzawa T, Itoh K, Ida K, Itoh S I, Tamura N, Sakakibara S, Kasuya N, Fujisawa A, Kubo S and Shimozuma T 2011 Phys. Rev. Lett. 107 115001
[43] Shi Z 2018 APS Division of Plasma Physics Meeting Abstracts
[44] Shi Z, Zhong W, Yang Z, Liang A, Wen J, Jiang M, Shi P, Fu B, Chen C, Liu Z and Ding X 2018 Rev. Sci. Instrum. 89 10H104
[45] Schirmer J, Conway G D, Zohm H, Suttrop W and ASDEX Upgrade team 2006 Nucl. Fusion 46 S780
[46] Fisher R A 1937 Ann. Eugen. 7 355
[47] Alonso J A, Sanchez E, Calvo I, Velasco J L, McCarthy K J, Chmyga A, Eliseev L G, Estrada T, Kleiber R, Krupnik L I and Melnikov A V 2017 Phys. Rev. Lett. 118 185002
[48] Li J C, Dong J Q, Ji X Q and Hu Y J 2021 Chin. Phys. B 30 075203
[49] Li J C, Gong X Y, Dong J Q, Wang J and Yin L 2016 Chin. Phys. B 25 045201
[50] Jiao Y M, Yao L H, Feng B B, Chen C Y, Zhou Y, Shi Z B, Dong J Q and Duan X R 2010 Acta Phys. Sin. 59 7191 (in Chinese)
[51] Xu J Q, Peng X D, Hao G Z, Chen W, Li J Q, Qu H P, Li J C, Ren G Z, He X X and Li Y G 2022 Phys. Plasmas 29 012508
[52] Xu J Q, Li J C, Peng X D, Qu Y R, Lin Z, Jiang M, Huang Z H, Wu N, Wang W C, Hao G Z and Chen W 2022 Nucl. Fusion 62 126030
[53] Pan O, Xu Y, Hidalgo C, Zhong W L, Shi Z B, Ji X Q, Jiang M, Feng B B, Zhou Y, Cheng J, Liu Y, Xu M, Chen W, Ding X T, Yan L W, Yang Q W, Duan X R and Liu Y 2015 Nucl. Fusion 55 113010
[1] Numerical study of alpha particle loss with toroidal field ripple based on CFETR steady-state scenario
Niuqi Li(李钮琦), Yingfeng Xu(徐颖峰), Fangchuan Zhong(钟方川), and Debing Zhang(张德兵). Chin. Phys. B, 2024, 33(1): 015202.
[2] Development of electromagnetic pellet injector for disruption mitigation of tokamak plasma
Feng Li(李峰), Zhong-Yong Chen(陈忠勇), Sheng-Guo Xia(夏胜国), Wei Yan(严伟), Wei-Kang Zhang(张维康), Jun-Hui Tang(唐俊辉), You Li(李由), Yu Zhong(钟昱), Jian-Gang Fang(方建港), Fan-Xi Liu(刘凡溪),Gui-Nan Zou(邹癸南), Yin-Long Yu(喻寅龙), Zi-Sen Nie(聂子森), Zhong-He Jiang(江中和),Neng-Chao Wang(王能超), Yong-Hua Ding(丁永华), Yuan Pan(潘垣), and the J-TEXT team. Chin. Phys. B, 2023, 32(7): 075205.
[3] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[4] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[5] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
Zongyu Yang(杨宗谕), Yuhang Liu(刘宇航), Xiaobo Zhu(朱晓博), Zhengwei Chen(陈正威), Fan Xia(夏凡), Wulyu Zhong(钟武律), Zhe Gao(高喆), Yipo Zhang(张轶泼), and Yi Liu(刘仪). Chin. Phys. B, 2023, 32(7): 075202.
[6] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[7] Effect of tearing modes on the confinement of runaway electrons in Experimental Advanced Superconducting Tokamak
Rui-Jie Zhou(周瑞杰). Chin. Phys. B, 2023, 32(7): 075204.
[8] Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生). Chin. Phys. B, 2023, 32(7): 075207.
[9] Drift surface solver for runaway electron current dominant equilibria during the current quench
Lu Yuan(袁露) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075208.
[10] Stability impacts from the current and pressure profile modifications within finite sized island
Yuxiang Sun(孙宇翔) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075212.
[11] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[12] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[13] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[14] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[15] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
No Suggested Reading articles found!