INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
Development of a monochromatic crystal backlight imager for the recent double-cone ignition experiments |
Chenglong Zhang(张成龙)1,2, Yihang Zhang(张翌航)2, Xiaohui Yuan(远晓辉)3,4, Zhe Zhang(张喆)2,4,5,†, Miaohua Xu(徐妙华)6,‡, Yu Dai(戴羽)2,7, Yufeng Dong(董玉峰)2,7, Haochen Gu(谷昊琛)2,7, Zhengdong Liu(刘正东)8,9, Xu Zhao(赵旭)3,4, Yutong Li(李玉同)2,4,5, Yingjun Li(李英骏)1,§, Jianqiang Zhu(朱健强)10, and Jie Zhang(张杰)2,3,4 |
1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Key Laboratory for Laser Plasmas(MoE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 4 Collaborative Innovation Center of IFSA(CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China; 6 School of Science, China University of Mining and Technology(Beijing), Beijing 100089, China; 7 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 8 Department of Astronomy, Beijing Normal University, Beijing 100875, China; 9 Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, China 10 Key Laboratory of High Power Laser and Physics, Chinese Academy of Sciences, Shanghai 201800, China |
|
|
Abstract We developed a monochromatic crystal backlight imaging system for the double-cone ignition (DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and temporal evolution of the head-on colliding plasma from the two compressing cones in the DCI experiments. The influence of laser parameters on the x-ray backlighter intensity and spatial resolution of the imaging system was investigated. The imaging system had a spatial resolution of 10 μm when employing a CCD detector. Experiments demonstrated that the system can obtain time-resolved radiographic images with high quality, enabling the precise measurement of the shape, size, and density distribution of the plasma.
|
Received: 05 September 2023
Revised: 01 November 2023
Accepted manuscript online: 29 November 2023
|
PACS:
|
52.57.-z
|
(Laser inertial confinement)
|
|
52.57.Kk
|
(Fast ignition of compressed fusion fuels)
|
|
Fund: Project supported by the staff of the Shenguang-II upgrade Laser facility. This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25010100, XDA25010300, XDA25030100, XDA25030200, and XDA25051000), the National Natural Science Foundation of China (Grant Nos. 11827807 and 12105359), the Open Foundation of Key Laboratory of High Power Laser and Physics of Chinese Academy of Sciences (Grant No. SGKF202105), and the Chinese Academy of Sciences Youth Interdisciplinary Team (Grant No. JCTD-2022-05). |
Corresponding Authors:
Zhe Zhang, Miaohua Xu, Yingjun Li
E-mail: zzhang@iphy.ac.cn;mhxu@cumtb.edu.cn;lyj@aphy.iphy.ac.cn
|
Cite this article:
Chenglong Zhang(张成龙), Yihang Zhang(张翌航), Xiaohui Yuan(远晓辉), Zhe Zhang(张喆), Miaohua Xu(徐妙华), Yu Dai(戴羽), Yufeng Dong(董玉峰), Haochen Gu(谷昊琛), Zhengdong Liu(刘正东), Xu Zhao(赵旭), Yutong Li(李玉同), Yingjun Li(李英骏), Jianqiang Zhu(朱健强), and Jie Zhang(张杰) Development of a monochromatic crystal backlight imager for the recent double-cone ignition experiments 2024 Chin. Phys. B 33 025201
|
[1] Zhang J, Wang W M, Yang X H, et al. 2020 Phil. Trans. R. Soc. A 378 20200015 [2] Lindl J D 1994 AIP Conf. Proc. 318 635 [3] Kodama R, Norreys P A, Mima K, et al. 2001 Nature 412 798 [4] Azechi H, Sakaiya T, Watari T, et al. 2009 Phys. Rev. Lett. 102 235002 [5] Betti R, Zhou C D, Anderson K S, et al. 2007 Phys. Rev. Lett. 98 155001 [6] Zhang Z, Yuan X H, Zhang Y H, et al. 2022 Acta Phys. Sin. 71 155201 (in Chinese) [7] Fang K, Zhang Y H, Dong Y F, et al. 2023 Phys. Plasmas 30 042705 [8] Abe Y, Nakao A, Arikawa Y, et al. 2022 Rev. Sci. Instrum. 93 093523 [9] Mangan M A, Ruiz C L, Cooper G W, et al. 2022 Rev. Sci. Instrum. 93 103514 [10] Frenje J A, Casey D T, Li C K, et al. 2010 Phys. Plasmas 17 056311 [11] Lahmann B, Johnson M G, Hahn K D, et al. 2020 Rev. Sci. Instrum. 91 073501 [12] Johnson M G 2023 Rev. Sci. Instrum. 94 021104 [13] Tommasini R, MacPhee A, Hey D, et al. 2008 Rev. Sci. Instrum. 79 10E901 [14] Tommasini R, Hatchett S P, Hey D S, et al. 2011 Phys. Plasmas 18 056309 [15] Marshall F J, Mckenty P W, Delettrez J A, et al. 2009 Phys. Rev. Lett. 102 185004 [16] Theobald W, Solodov A A, Stoeckl C, et al. 2014 Nat. Commun. 5 5785 [17] Fujioka S, Fujiwara T, Tanabe M, et al. 2010 Rev. Sci. Instrum. 81 10E529 [18] Sawada H, Daykin T, McLean H S, et al. 2017 Rev. Sci. Instrum. 88 063502 [19] Hall G N, Krauland C M, Schollmeier M S, et al. 2019 Rev. Sci. Instrum. 90 013702 [20] Kawaguchi C, Flippo K A, Rasmus A M, et al. 2021 Rev. Sci. Instrum. 92 093508 [21] Bai X H, Bai Y L, Liu B Y, et al. 2011 Opt. Precis. Eng. 19 367 [22] Chen H, Shepherd R, Chung H K, et al. 2007 Phys. Rev. E 76 056402 [23] Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 7 e12 [24] Sanchez del Rio M and Dejus R J 2004 Proc. SPIE 5536 171 [25] Miyahara J, Takahashi T, Amemiya Y, et al. 1986 Nucl. Instrum. Methods Phys. Res. Sect. A 246 572 [26] Dong Y F, Zhang Z, Xu M H, et al. 2020 Rev. Sci. Instrum. 91 033105 [27] Sakata S, Lee S, Morita H, et al. 2018 Nat. Commun. 9 3937 [28] Reich C H, Uschmann I, Ewald F, et al. 2003 Phys. Rev. E 68 056408 [29] Li Y T, Yuan X H, Xu M H, et al. 2006 Phys. Rev. Lett. 96 165003 [30] Lin X X, Li Y T, Liu B C, et al. 2010 Phys. Rev. E 82 046401 [31] Rousse A, Audebert P, Geindre J P, et al. 1994 Phys. Rev. E 50 2200 [32] Wharton K B, Hatchett S P, Wilks S C, et al. 1998 Phys. Rev. Lett. 81 822 [33] Feurer T, Forster E, Gibbon P, et al. 1999 Applications of High Field and Short Wavelength Sources VIII, 1999, Washington D.C., pp. 108-110 [34] Schollmeier M S, Geissel M, Shores J E, et al. 2015 Appl. Opt. 54 5147 [35] Harding E C, Robertson G K, Dunham G S, et al. 2023 Rev. Sci. Instrum. 94 083509 [36] Stephens R B, Snavely R A, Aglitskiy A, et al. 2004 Phys. Rev. E 69 66414 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|