Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020302    DOI: 10.1088/1674-1056/ad0bf0
GENERAL Prev   Next  

Chiral bound states in a staggered array of coupled resonators

Wu-Lin Jin(金伍林)1, Jing Li(李静)1, Jing Lu(卢竞)1, Zhi-Rui Gong(龚志瑞)2, and Lan Zhou(周兰)1,†
1 Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Institute of Interdisciplinary Studies, Xiangjiang-Laboratory and Department of Physics, Hunan Normal University, Changsha 410081, China;
2 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  We study the chiral bound states in a coupled-resonator array with staggered hopping strengths, which interacts with a two-level small atom through a single coupling point or two adjacent ones. In addition to the two typical bound states found above and below the energy bands, this system presents an extraordinary chiral bound state located within the energy gap. We use the chirality to quantify the breaking of the mirror symmetry. We find that the chirality value undergoes continuous changes by tuning the coupling strengths. The preferred direction of the chirality is controlled not only by the competition between the intracell and the intercell hoppings in the coupled-resonator array, but also by the coherence between the two coupling points. In the case with one coupling point, the chirality values varies monotonously with difference between the intracell hopping and the intercell hoppings. While in the case with two coupling points, due to the coherence between the two coupling points the perfect chiral states can be obtained.
Keywords:  bound states      two-level small atom      coupled-resonator array      chirality  
Received:  18 August 2023      Revised:  02 November 2023      Accepted manuscript online:  13 November 2023
PACS:  03.65.Pm (Relativistic wave equations)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975095, 12075082, 11935006, and 12247105), the Major Sci-Tech Program of Hunan Province, China (Grant No. 2023ZJ1010), and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2019A1515011400 and 2023A151501223).
Corresponding Authors:  Lan Zhou     E-mail:  zhoulan@hunnu.edu.cn

Cite this article: 

Wu-Lin Jin(金伍林), Jing Li(李静), Jing Lu(卢竞), Zhi-Rui Gong(龚志瑞), and Lan Zhou(周兰) Chiral bound states in a staggered array of coupled resonators 2024 Chin. Phys. B 33 020302

[1] Shen J T and Fan S 2007 Phys. Rev. Lett. 98 153003
[2] Zheng H X, Gauthier D J and Baranger H U 2010 Phys. Rev. A 82 063816
[3] Shi T, Fan S H and Sun C P 2011 Phys. Rev. A 84 063803
[4] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
[5] Zhou L, Yang S, Liu Y X, Sun C P and Nori F 2009 Phys. Rev. A 80 062109
[6] Zhou L, Dong H, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. A 78 063827
[7] Gong Z R, Ian H, Zhou L and Sun C P 2008 Phys. Rev. A 78 053806
[8] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604
[9] Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805
[10] Ahumada M, Orellana P A, Domínguez-Adame F and Malyshev A V 2019 Phys. Rev. A 99 033827
[11] Xu H S and Jin L 2022 Phys. Rev. Res. 4 L032015
[12] Wang Z H, Zhou L, Li Y and Sun C P 2014 Phys. Rev. A 89 053813
[13] Yan W B and Fan H 2014 Phys. Rev. A 90 053807
[14] Longo P, Schmitteckert P and Busch K 2010 Phys. Rev. Lett. 104 023602
[15] Ahumada M, Orellana P A and Retamal J C 2018 Phys. Rev. A 98 023827
[16] Lombardo F, Ciccarello F and Palma G M 2014 Phys. Rev. A 89 053826
[17] Sánchez-Burillo E, Zueco D, Martín-Moreno L and García-Ripoll J J 2017 Phys. Rev. A 96 023831
[18] Zhou L, Chang Y, Dong H, Kuang L M and Sun C P 2012 Phys. Rev. A 85 013806
[19] Zhao W and Wang Z H 2020 Phys. Rev. A 101 053855
[20] Cheng W J, Wang Z H and Liu Y X 2022 Phys. Rev. A 106 033522
[21] Kim E J, Zhang X Y, Ferreira V S, Jash B, Iverson J K, Sipahigil A, Bello M, González-Tudela A, Mirhosseini M and Painter O 2021 Phys. Rev. X 11 011015
[22] Liu Y B and Houck A A 2016 Nat. Phys. 13 48
[23] Vega C, Bello M, Porras D and González-Tudela A 2021 Phys. Rev. A 104 053522
[24] Asb0th J K, Oroszlány L and Pályi A 2016 Lecture Notes in Physics 919 pp. 1-9
[25] Ciccarello F 2011 Phys. Rev. A 83 043802
[26] Almeida G M A, Ciccarello F, Apollaro T J G and Souza A M C 2016 Phys. Rev. A 93 032310
[27] Scigliuzzo M, Calajó G, Ciccarello F, Lozano D P, Bengtsson A, Scarlino P, Wallraff A, Chang D, Delsing P and Gasparinetti S 2022 Phys. Rev. X 12 031036
[28] Gao B, Li J, Jiang H W, Wang J S, Zhu C J, Xu J Q and Yang Y P 2021 Opt. Express 29 31010
[29] Fong P T and Law C K 2017 Phys. Rev. A 96 023842
[30] Xu X W, Chen A X, Li Y and Liu Y X 2017 Phys. Rev. A 95 063808
[31] Wang Z H, Du L, Li Y and Liu Y X 2019 Phys. Rev. A 100 053809
[32] Qiao L and Sun C P 2019 Phys. Rev. A 100 063806
[33] Bello M, Platpro G, Cirac J I and Gonzalez-tudela A 2019 Sci. Adv. 5 eaaw0297
[34] Wang X, Liu T, Kockum A F, Li H R and Nori F 2021 Phys. Rev. Lett. 126 043602
[1] Erratum to “Relativistic solutions for diatomic molecules subject to pseudoharmonic oscillator in arbitrary dimensions”
Sami Ortakaya. Chin. Phys. B, 2023, 32(8): 089901.
[2] Discrete vortex bound states with a van Hove singularity in the vicinity of the Fermi level
Delong Fang(方德龙) and Yunkang Cui(崔云康). Chin. Phys. B, 2023, 32(5): 057401.
[3] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[4] Optical chirality induced by spin-orbit interaction of light in a tightly focused Laguerre-Gaussian beam
Mingchao Zhu(朱明超), Shenggui Fu(付圣贵), and Zhongsheng Man(满忠胜). Chin. Phys. B, 2023, 32(11): 114202.
[5] Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality
Xue-Feng Zhang(张雪枫), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2023, 32(10): 107501.
[6] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[7] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[8] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[9] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[10] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[11] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[12] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[13] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[14] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[15] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
No Suggested Reading articles found!