Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020301    DOI: 10.1088/1674-1056/ad0628
GENERAL Prev   Next  

Analytical solution to incident angle quasi-phase-matching engineering for second harmonic generation in a periodic-poled lithium niobate crystal

Li-Hong Hong(洪丽红)1,2,†, Ya-Ting Qiu(邱雅婷)2,†, Xiao-Ni Li(李晓霓)2,†, Bao-Qin Chen(陈宝琴)2, and Zhi-Yuan Li(李志远)2,‡
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Abstract  Phase matching or quasi-phase matching (QPM) is of significant importance to the conversion efficiency of second harmonic generation (SHG) in artificial nonlinear crystals like lithium niobate (LN) crystal or microstructured nonlinear crystals like periodic-poled lithium niobate (PPLN) crystals. In this paper, we propose and show that the incident angle of pump laser light can be harnessed as an alternative versatile tool to engineer QPM for high-efficiency SHG in a PPLN crystal, in addition to conventional means of period adjusting or temperature tuning. A rigorous model is established and analytical solution of the nonlinear conversion efficiency under the small and large signal approximation theory is obtained at different incident angles. The variation of phase mismatching and walk-off length with incident angle or incident wavelength are also explored. Numerical simulations for a PPLN crystal with first order QPM structure are used to confirm our theoretical predictions based on the exact analytical solution of the general large-signal theory. The results show that the narrow-band tunable SHG output covers a range of 532 nm-552.8 nm at the ideal incident angle from 0° to 90°. This theoretical scheme, fully considering the reflection and transmission at the air-crystal interface, would offer an efficient theoretical system to evaluate the nonlinear frequency conversion and help to obtain the maximum SHG conversion efficiency by selecting an optimum incident wavelength and incident angle in a specially designed PPLN crystal, which would be very helpful for the design of tunable narrow-band pulse nanosecond, picosecond, and femtosecond laser devices via PPLN and other microstructured LN crystals.
Keywords:  nonlinear frequency conversion      transmission      reflection      lithium niobate  
Received:  05 September 2023      Revised:  13 October 2023      Accepted manuscript online:  24 October 2023
PACS:  03.50.De (Classical electromagnetism, Maxwell equations)  
  42.70.Mp (Nonlinear optical crystals)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974119), the Science and Technology Project of Guangdong Province, China (Grant No. 2020B010190001), the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), the National Key Research and Development Program of China (Grant Nos. 2018YFA, 0306200, and 2019YFB2203500), and the Science and Technology Program of Guangzhou City (Grant No. 2023A04J1309).
Corresponding Authors:  Zhi-Yuan Li     E-mail:  phzyli@scut.edu.cn

Cite this article: 

Li-Hong Hong(洪丽红), Ya-Ting Qiu(邱雅婷), Xiao-Ni Li(李晓霓), Bao-Qin Chen(陈宝琴), and Zhi-Yuan Li(李志远) Analytical solution to incident angle quasi-phase-matching engineering for second harmonic generation in a periodic-poled lithium niobate crystal 2024 Chin. Phys. B 33 020301

[1] Maiman T H 1960 Nature 187 493
[2] Chen B Q, Zhang C, Liu R J and Li Z Y 2014 Appl. Phys. Lett. 105 151106
[3] Zhang J, Huang J Y, Wang H, Wong K S and Wong G K 1998 JOSA B 15 200
[4] Zhu S N, Zhu Y Y, Qin Y Q, Wang H F, Ge C Z and Ming N B 1997 Phys. Rev. Lett. 78 2752
[5] Yang F, Wang Z, Zhou Y, Li F, Xu J, Xu Y, Cheng X, Lu Y, Bo Y, Peng Q, Cui D, Zhang X, Wang X, Zhu Y and Xu Z 2009 Appl. Phys. B 96 415
[6] Broderick N G R, Ross G W, Offerhaus H L, Richardson D J and Hanna D C 2000 Phys. Rev. Lett. 84 4345
[7] Franken P A and Ward J F 1963 Rev. Mod. Phys. 35 23
[8] Herman W N and Hayden L M 1995 JOSA B 12 416
[9] Ni P, Ma B, Wang X, Cheng B and Zhang D 2003 Appl. Phys. Lett. 82 4230
[10] Berger V 1998 Phys. Rev. Lett. 81 4136
[11] Yan S, Dou J, Ma B, Cheng B and Zhang D 2007 Appl. Phys. Lett. 91 011101
[12] Fejer M M, Magel G A, Jundt D H and Byer R L 1992 IEEE J. Quantum Electron. 28 2631
[13] Ma B Q, Wang T, Sheng Y, Ni P G and Wang Y Q 2005 Appl. Phys. Lett. 87 251103
[14] Zhao L M, Yue G K, Zhou Y S and Wang F H 2013 Opt. Express 21 17592
[15] Ren M L and Li Z Y 2010 Opt. Express 18 7288
[16] Ren M L and Li Z Y 2011 Europhys. Lett. 94 44003
[17] Nikogosyan D N 2006 Nonlinear optical crystals: a complete survey (Springer Science & Business Media)
[18] Arizmendi L 2004 Phys. Status Solidi 201 253
[19] Armstrong J A, Bloembergen N, Ducuing J and Pershan P S 1962 Phys. Rev. 127 1918
[20] Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q and Li Z Y 2014 Light Sci. Appl. 3 e189
[21] Xu P, Ji S H, Zhu S N, Yu X Q, Sun J, Wang H T, He J L, Zhu Y Y and Ming N B 2004 Phys. Rev. Lett. 93 133904
[22] McMullen J D 1975 J. Appl. Phys. 46 3076
[23] Chen B Q, Zhang C, Hu C Y, Liu R J and Li Z Y 2015 Phys. Rev. Lett. 115 083902
[24] Rustagi K, Mehendale S C and Meenakshi S 1982 IEEE J. Quantum Electron. 18 1029
[25] Hu C Y and Li Z Y 2017 J. Appl. Phys. 121 123110
[26] Lin J T, Bo F, Cheng Y and Xu J J 2020 Photon. Res. 8 1910
[27] Boes A, Corcoran B, Chang L, Bowers J and Mitchell A 2018 Laser Photon. Rev. 12 1700256
[28] Zhu D, Shao L B, Yu M J, Cheng R, Desiatov B, Xin C J, Hu Y W, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclalr N, Reimer C, Zhang M and Lončar M 2021 Adv. Opt. Photon. 13 242
[29] Vazimali M G and Fathpour S 2022 Adv. Photon. 4 034001
[30] Poberaj G, Hu H, Sohler W and Günter P 2012 Laser Photon. Rev. 6 488
[31] Born M and Wolf E 2013 Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier)
[32] Wang P Q 2018 Appl. Opt. 57 4950
[33] McClain S C, Hillman L W and Chipman R A 1993 JOSA A 10 2371
[34] Avendaño-Alejo M, Stavroudis O N and Goitia A R B Y 2002 JOSA A 19 1688
[35] Avendaaño-Alejo M and Stavroudis O N 2002 JOSA A 19 1674
[36] Liang Q T 1990 Appl. Opt. 29 1008
[37] Mosteller L P and Wooten F 1968 JOSA 58 511
[38] Simon M C 1983 Appl. Opt. 22 354
[39] Lekner J 1991 J. Phys.: Condens. Matter 3 6121
[40] Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B 91 343
[1] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏). Chin. Phys. B, 2024, 33(3): 038502.
[2] Impact of different interaction behavior on epidemic spreading in time-dependent social networks
Shuai Huang(黄帅), Jie Chen(陈杰), Meng-Yu Li(李梦玉),Yuan-Hao Xu(徐元昊), and Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2024, 33(3): 030205.
[3] High-efficiency ultra-fast all-optical photonic crystal diode based on the lateral-coupled nonlinear elliptical defect
Daxing Li(李大星), Kaizhu Liu(刘凯柱), Chunlong Yu(余春龙), Kuo Zhang(张括),Yueqin Liu(刘跃钦), and Shuai Feng(冯帅). Chin. Phys. B, 2024, 33(3): 034215.
[4] Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy
Wei Huang(黄威), Jinling Yu(俞金玲), Yu Liu(刘雨), Yan Peng(彭燕),Lijun Wang(王利军), Ping Liang(梁平), Tangsheng Chen(陈堂胜), Xiangang Xu(徐现刚), Fengqi Liu(刘峰奇), and Yonghai Chen(陈涌海). Chin. Phys. B, 2024, 33(3): 037801.
[5] Studying the co-evolution of information diffusion, vaccination behavior and disease transmission in multilayer networks with local and global effects
Liang'an Huo(霍良安) and Bingjie Wu(武兵杰). Chin. Phys. B, 2024, 33(3): 038702.
[6] Dynamics of information diffusion and disease transmission in time-varying multiplex networks with asymmetric activity levels
Xiao-Xiao Xie(谢笑笑), Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ying-Ying Cheng(程英英). Chin. Phys. B, 2024, 33(3): 038704.
[7] Capturing the non-equilibrium state in light—matter—free-electron interactions through ultrafast transmission electron microscopy
Wentao Wang(汪文韬), Shuaishuai Sun(孙帅帅), Jun Li(李俊), Dingguo Zheng(郑丁国), Siyuan Huang(黄思远), Huanfang Tian(田焕芳), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇). Chin. Phys. B, 2024, 33(1): 010701.
[8] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[9] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[10] Microwave absorption and bandwidth study of Y2Co17 rare earth soft magnetic alloy with easy-plane anisotropy
Yun-Guo Ma(马云国), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Hao Wang(王浩), Zhe Sun(孙哲), Cheng-Fa Tu(涂成发), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(8): 084202.
[11] Assessing high-energy x-ray and proton irradiation effects on electrical properties of P-GaN and N-GaN thin films
Aoxue Zhong(钟傲雪), Lei Wang(王磊), Yun Tang(唐蕴), Yongtao Yang(杨永涛), Jinjin Wang(王进进), Huiping Zhu(朱慧平), Zhenping Wu(吴真平), Weihua Tang(唐为华), and Bo Li(李博). Chin. Phys. B, 2023, 32(7): 076102.
[12] Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y2Co17@SiO2 rare earth soft magnetic composites
Liang Qiao(乔亮), Cheng-Fa Tu(涂成发), Wei Wu(吴伟), Wen-Biao Wang(王文彪), Sheng-Yu Yang(杨晟宇), Sun Zhe(孙哲), Peng Wu(吴鹏), Jin-Bo Yang(杨金波), Chang-Sheng Wang(王常生), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(5): 054202.
[13] Rigorous solution to second harmonic generation considering transmission and reflection of light at air-crystal interface
Ya-Ting Qiu(邱雅婷), Li-Hong Hong(洪丽红), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2023, 32(5): 050301.
[14] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[15] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
No Suggested Reading articles found!