Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020303    DOI: 10.1088/1674-1056/ad09ca
GENERAL Prev   Next  

Proposal for sequential Stern-Gerlach experiment with programmable quantum processors

Meng-Jun Hu(胡孟军)1,†, Haixing Miao(缪海兴)2, and Yong-Sheng Zhang(张永生)3,4,5
1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
2 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
3 Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
4 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
5 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  The historical significance of the Stern-Gerlach (SG) experiment lies in its provision of the initial evidence for space quantization. Over time, its sequential form has evolved into an elegant paradigm that effectively illustrates the fundamental principles of quantum theory. To date, the practical implementation of the sequential SG experiment has not been fully achieved. In this study, we demonstrate the capability of programmable quantum processors to simulate the sequential SG experiment. The specific parametric shallow quantum circuits, which are suitable for the limitations of current noisy quantum hardware, are given to replicate the functionality of SG devices with the ability to perform measurements in different directions. Surprisingly, it has been demonstrated that Wigner's SG interferometer can be readily implemented in our sequential quantum circuit. With the utilization of the identical circuits, it is also feasible to implement Wheeler's delayed-choice experiment. We propose the utilization of cross-shaped programmable quantum processors to showcase sequential experiments, and the simulation results demonstrate a strong alignment with theoretical predictions. With the rapid advancement of cloud-based quantum computing, such as BAQIS Quafu, it is our belief that the proposed solution is well-suited for deployment on the cloud, allowing for public accessibility. Our findings not only expand the potential applications of quantum computers, but also contribute to a deeper comprehension of the fundamental principles underlying quantum theory.
Keywords:  sequential Stern-Gerlach      quantum circuit      quantum processor  
Received:  05 September 2023      Revised:  05 November 2023      Accepted manuscript online:  06 November 2023
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Hai-Xing Miao is supported by the State Key Laboratory of Low Dimensional Quantum Physics and the Start-up Fund provided by Tsinghua University. Yong-Sheng Zhang acknowledges the financial support provided by the National Natural Science Foundation of China (Grant No. 92065113) and the Anhui Initiative in Quantum Information Technologies.
Corresponding Authors:  Meng-Jun Hu     E-mail:  humj@baqis.ac.cn

Cite this article: 

Meng-Jun Hu(胡孟军), Haixing Miao(缪海兴), and Yong-Sheng Zhang(张永生) Proposal for sequential Stern-Gerlach experiment with programmable quantum processors 2024 Chin. Phys. B 33 020303

[1] Stern O 1921 Zeitschrift für Physik 7 249
[2] Gerlach W and Stern O 1922 Zeitschrift für Physik 9 349
[3] Castelvecchi D 2022 Nat. Rev. Phys. 4 140
[4] Friedrich B and Herschbach D 2023 Physics Today 56 53
[5] Gaudsmit S and Uhlenbeck G E 1925 Zeitschrift für Physik 35 618
[6] Fraser R J G 1927 Proc. R. Soc. A 114 212
[7] Schwinger J 2001 Quantum mechanics: symbolism of atomic measurements, ed. by B. G. Englert (Heidelberg: Springer-Verlag, Berlin)
[8] Sakurai J J 1994 Modern Quantum Mechanics, revised edition, ed. by S. F. Tuan (New York: Addison-Wesley)
[9] Zhu G and Singh C 2011 Am. J. Phys. 79 499
[10] Dirac P A M 1958 The Principles of Quantum Mechanics (Oxford: Clarendon)
[11] Heisenberg W 1949 The Physical Principles of the Quantum Theory, Trans. by C. Eckhart and F. C. Hoyt (New York: Dover Publications)
[12] Wigner E P 1963 Am. J. Phys. 31 6
[13] Englert B G, Schwinger J and Scully M O 1988 Found. Phys. 18 1045
[14] Schwinger J, Scully M O and Englert B G 1988 Z. Phys. D 10 135
[15] Scully M O, Englert B G and Schwinger J 1989 Phys. Rev. A 40 1775
[16] Margalit Y, et al. 2021 Sci. Adv. 7 eabg2879
[17] Klabunde W and Phipps T E 1934 Phys. Rev. 45 59
[18] Sherwood J E, Stephenson T E and Bernstein S 1954 Phys. Rev. 96 1546
[19] Hasegawa Y, Loidl R, Badurek G, Baron M and Rauch H 2003 Nature 425 45
[20] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[21] Monroe C 2002 Nature 416 238
[22] Arute F, et al. 2019 Nature 574 505
[23] Wu Y, et al. 2021 Phys. Rev. Lett. 127 180501
[24] Brown K R, Kim J and Monroe C 2016 npj Quantum Inf. 2 16034
[25] Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X and Monroe C 2017 Nature 551 601
[26] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V and Lukin M D 2017 Nature 551 579
[27] Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K, Lienhard V, Henry L, Lang T C, Lahaye T, Läuchli A M and Browaeys A 2021 Nature 595 233
[28] Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuletić V and Lukin M D 2021 Nature 595 227
[29] Zhong H S, et al. 2021 Phys. Rev. Lett. 127 180502
[30] Preskill J 2018 Quantum 2 79
[31] Cerezo M, et al. 2021 Nat. Rev. Phys. 3 625
[32] Farhi E, Goldstone J and Gutmann S 2014 arXiv:1411.4028[quant-ph]
[33] Harrigan M P, et al. 2021 Nat. Phys. 17 332
[34] Zhuang W F, et al. 2021 arXiv:2112.11151[quant-ph]
[35] von Neumann J 1955 Mathematical Foundations of Quantum Mechanics English translation by R. T. Beyer (Princeton: Princeton University Press)
[36] Hu M J, Chen Y, Ma Y, Li X, Liu Y, Zhang Y S and Miao H X 2022 arXiv:2206.14029[quant-ph]
[37] https://github.com/Qiskit/qiskit.
[38] https://github.com/BAQIS-Quantum/Qcover.
[39] Wheeler J A and Zurek W H 1983 eds., Quantum Theory and Measurement (Princeton: Princeton University) pp. 182-213
[40] Jacques V, et al. 2007 Science 315 966
[41] Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F and Guo G C 2021 Nat. Photon. 6 600
[42] Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F and Guo G C 2021 Nat. Photon. 6 600
[43] http://quafu.baqis.ac.cn/
[1] Integer multiple quantum image scaling based on NEQR and bicubic interpolation
Shuo Cai(蔡硕), Ri-Gui Zhou(周日贵), Jia Luo(罗佳), and Si-Zhe Chen(陈思哲). Chin. Phys. B, 2024, 33(4): 040302.
[2] Analysis of learnability of a novel hybrid quantum-classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[3] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[4] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
[5] Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
Chenxiao Dong(董陈潇), Zhesen Yang(杨哲森), Jinfeng Zeng(曾进峰), and Jiangping Hu(胡江平). Chin. Phys. B, 2023, 32(7): 070305.
[6] A backdoor attack against quantum neural networks with limited information
Chen-Yi Huang(黄晨猗) and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2023, 32(10): 100306.
[7] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[8] Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
Xiu-Bo Chen(陈秀波), Li-Yun Zhao(赵立云), Gang Xu(徐刚), Xing-Bo Pan(潘兴博), Si-Yi Chen(陈思怡), Zhen-Wen Cheng(程振文), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2022, 31(4): 040305.
[9] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[10] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[11] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[12] Novel quantum secret image sharing scheme
Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文). Chin. Phys. B, 2019, 28(4): 040302.
[13] Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Jie Li(李洁), Yirong Jin(金贻荣), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(7): 074206.
[14] Two-qubit pure state tomography by five product orthonormal bases
Yu Wang(王宇), Yun Shang(尚云). Chin. Phys. B, 2018, 27(10): 100306.
[15] Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio
Zhi-Guo Qu(瞿治国), Huang-Xing He(何煌兴), Tao Li(李涛). Chin. Phys. B, 2018, 27(1): 010306.
No Suggested Reading articles found!