Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 027501    DOI: 10.1088/1674-1056/ad0f85
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields

Runze Chen(陈润泽)1, Anni Cao(曹安妮)5, Xinran Wang(王馨苒)1,3, Yang Liu(柳洋)1, Hongxin Yang(杨洪新)4, and Weisheng Zhao(赵巍胜)1,2,3,†
1 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China;
2 Hefei Innovation Research Institute, Beihang University, Hefei 230013, China;
3 Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266000, China;
4 National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
5 Beijing Microelectronics Technology Institute, Beijing 100076, China
Abstract  Dzyaloshinskii-Moriya interaction (DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall (DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin-orbit coupling (SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime (<10-2 V/nm). Brillouin light scattering (BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI (VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin-orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.
Keywords:  Dzyaloshinskii-Moriya interaction      weak electric field control effect      Rashba spin-orbit coupling      interfacial orbital hybridization  
Received:  13 September 2023      Revised:  13 November 2023      Accepted manuscript online:  24 November 2023
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61627813, 62204018, and 61571023), the Beijing Municipal Science and Technology Project (Grant No. Z201100004220002), the National Key Technology Program of China (Grant No. 2017ZX01032101), the Program of Introducing Talents of Discipline to Universities in China (Grant No. B16001), and the VR Innovation Platform from Qingdao Science and Technology Commission.
Corresponding Authors:  Weisheng Zhao     E-mail:  weisheng.zhao@buaa.edu.cn

Cite this article: 

Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜) Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields 2024 Chin. Phys. B 33 027501

[1] Du A, Zhu D Q, Cao K H, Zhang Z Z, Guo Z X, Shi K W, Xiong D R, Xiao R, Cai W L, Yin J L, Lu S Y, Zhang C, Zhang Y, Luo S J, Fert A and Zhao W S 2023 Nat. Electron. 6 425
[2] Peng S Z, Zhu D Q, Li W X, Wu H, Grutter A J, Gilbert D A, Lu J Q, Xiong D R, Cai W L, Shafer P, Wang K L and Zhao W S 2020 Nat. Electron. 3 757
[3] Wang L D, Cheng H Y, Li P Z, Hees Y L W, Liu Y, Cao K H, Lavrijsen R, Lin X Y, Koopmans B and Zhao W S 2022 Proc. Natl. Acad. Sci. USA 119 e2204732119
[4] Yoda H, Shimomura N, Ohsawa Y, Shirotori S, Kato Y, Inokuchi T, Kamiguchi Y, Altansargai B, Saito Y, Koi K, Sugiyama H, Oikawa S, Shimizu M, Ishikawa M, Ikegami K and Kurobe A 2016 IEEE International Electron Devices Meeting (IEDM), December 3–7, 2016, San Francisco, CA, USA, p. 27.6.1
[5] Peng S Z, Lu J Q, Li W X, Wang L Z, Zhang H, Li X, Wang K L and Zhao W S 2019 IEEE International Electron Devices Meeting (IEDM), December 7–11, 2019, San Francisco, CA, USA, p. 28.6.1
[6] Guo Z X, Yin J L, Bai Y, Zhu D Q, Shi K W, Wang G F, Cao K H and Zhao W S 2021 Proc. IEEE 109 1398
[7] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[8] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
[9] Li S, Du A, Wang Y D, Wang X R, Zhang X Y, Cheng H Y, Cai W L, Lu S Y, Cao K H, Pan B, Lei N, Kang W, Liu J M, Fert A, Hou Z P and Zhao W S 2022 Sci. Bull. 67 691
[10] Cui Q R, Liang J H, Zhu Y M, Yao X and Yang H X 2023 Chin. Phys. Lett. 40 037502
[11] Li H N, Xue T X, Chen L, Sui Y R and Wei M B 2022 Chin. Phys. B 31 097501
[12] Li K K 2023 Chin. Phys. Lett. 40 027502
[13] Wang XR, Cao A N, Li S, Tang J, Du A, Cheng H Y, Sun Y M, Du H F, Zhang X Y and Zhao W S 2021 Phys. Rev. B 104 064421
[14] Kim K W, Lee H W, Lee K J and Stiles M D 2013 Phys. Rev. Lett. 111 216601
[15] Yang H X, Chen G, Cotta A A C, N’Diaye A T, Nikolaev S A, Soares E A, Macedo W A A, Liu K, Schmid A K, Fert A and Chshiev M 2018 Nat. Mater. 17 605
[16] Kundu A and Zhang S 2015 Phys. Rev. B 92 094434
[17] Srivastava T, Schott M, Juge R, Křižáková V, Belmeguenai M, oussigné Y, Bernand-Mantel A, Ranno L, Pizzini S, Chérif S M, Stashkevich A, Auffret S, Boulle O, Gaudin G, Chshiev M, Baraduc C and Béa H 2018 Nano Lett. 18 4871
[18] Zhang W, Zhong H, Zang R, Zhang Y, Yu S, Han G, Liu G L, Yan S S, Kang S and Mei L M 2018 Appl. Phys. Lett. 113 122406
[19] Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Béa H, Baraduc C, Auffret S, Gaudin G and Givord D 2017 Nano Lett. 17 3006
[20] Hsu P J, Kubetzka A, Finco A, Romming N, Bergmann K V and Wiesendanger R 2017 Nat. Nanotechnol. 12 123
[21] Nozaki T, Jibiki Y, Goto M, Tamura E, Nozaki T, Kubota H, Fukushima A, Yuasa S and Suzuki Y 2019 Appl. Phys. Lett. 114 012402
[22] Yu Z Y, Shen M K, Zeng Z M, Liang S H, Liu Y, Chen M, Zhang Z H, Lu Z H, You L, Yang X F, Zhang Y and Xiong R 2020 Nanoscale Adv. 2 1309
[23] Luo S J, Xu N, Guo Z, Zhang Y, Hong J and You L 2019 IEEE Electron Dev. Lett. 40 635
[24] Zhang Z Z, Zhu Y Z, Zhang Y, Zhang K, Nan J, Zheng Z Y, Zhang Y G and Zhao W S 2019 IEEE Electron Dev. Lett. 40 1984
[25] Cao A N, Zhang X Y, Koopmans B, Peng S Z, Zhang Y, Wang Z L, Yan S H, Yang H X and Zhao W S 2018 Nanoscale 10 12062
[26] Cao A N, Chen R Z, Wang X R, Zhang X Y, Lu S Y, Yan S S, Koopmans B and Zhao W S 2020 Nanotechnology 31 155705
[27] Nembach H T, Shaw J M, Weiler M, Jué E and Silva T J 2015 Nat. Phys. 11 825
[28] Ma X, Yu G Q, Li X, Wang T, Wu D, Olsson K S, Chu Z D, An K, Xiao J Q, Wang K L and Li X Q 2016 Phys. Rev. B 94 180408
[29] Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S and Adeyeye A O 2009 Appl. Phys. Lett. 94 083112
[30] Ma X, Yu G Q, Tang C, Li X, He C L, Shi J, Wang K L and Li X Q 2018 Phys. Rev. Lett. 120 157204
[31] Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Qiu X P and Yang H 2015 Appl. Phys. Lett. 106 052403
[32] Belmeguenai M, Adam J P, Roussigné Y, Eimer S, Devolder T, Kim J V, Cherif S M, Stashkevich A and Thiaville A 2015 Phys. Rev. B 91 180405
[33] Belmeguenai M, Roussigne Y, Cherif S M, Stashkevich A, Petrisor J T, Nasui M and Gabor M S 2019 J. Phys. D: Appl. Phys. 52 125002
[34] Neugebauer J and Matthias S 1992 Phys. Rev. B 46 16067
[35] Yang H X, Boulle O, Cros V, Fert A and Chshiev M 2018 Sci. Rep. 8 12356
[36] Suwardy J, Goto M, Suzuki Y and Miwa S 2019 Jpn. J. Appl. Phys. 58 060917
[37] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871
[38] Kikuchi T, Koretsune T, Arita R and Tatara G 2016 Phys. Rev. Lett. 116 247201
[39] Yang B S, Cui Q R, Liang J H, Chshiev M and Yang H X 2020 Phys. Rev. B 101 014406
[40] Belabbes A, Bihlmayer G, Blügel S and Manchon A 2016 Sci. Rep. 6 24634
[41] Kashid V, Schena T, Zimmermann B, Mokrousov Y, Blügel S, Shah V and Salunke H G 2014 Phys. Rev. B 90 054412
[42] Chen R Z, Wang X R, Cheng H Y, Lee K J, Xiong D R, Kim J Y, Li S, Yang H X, Zhang H C, Cao K H, Kläui M, Peng S Z, Zhang X Y and Zhao W S 2021 Cell Rep. Phys. Sci. 2 100618
[43] Jadaun P, Register L F and Banerjee S K 2020 npj Comput. Mater. 6 88
[1] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[2] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[3] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[4] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[5] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[6] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[7] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
[8] Photon-assisted electronic and spin transport through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm interferometer
Jiyuan Bai(白继元), Li Li(李立), Zelong He(贺泽龙), Shujiang Ye(叶树江), Shujun Zhao(赵树军), Suihu Dang(党随虎), Weimin Sun(孙伟民). Chin. Phys. B, 2017, 26(11): 117302.
[9] Transferring information through a mixed-five-spin chain channel
Hamid Arian Zad, Hossein Movahhedian. Chin. Phys. B, 2016, 25(8): 080307.
[10] Phase diagram and collective modes in Rashba spin–orbit coupled BEC: Effect of in-plane magnetic field
Dong Dong (董冬), Zou Xu-Bo (邹旭波), Guo Guang-Can (郭光灿). Chin. Phys. B, 2015, 24(7): 076701.
[11] Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction
Qiao Jie (谯洁), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(11): 110306.
[12] The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field
Zhong Ming (钟鸣), Xu Hui (徐卉), Liu Xiao-Xian (刘小贤), Tong Pei-Qing (童培庆). Chin. Phys. B, 2013, 22(9): 090313.
[13] Magnetization reversal within Dzyaloshinskii–Moriya interaction under on-site Coulomb interaction in BiCrO3
Feng Hong-Jian (冯宏剑 ). Chin. Phys. B, 2012, 21(8): 087103.
[14] Transport properties in multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling
Tang Han-Zhao (唐翰昭), Zhai Li-Xue (翟利学), Liu Jian-Jun (刘建军). Chin. Phys. B, 2012, 21(12): 120303.
[15] A pure spin-current injector of semiconductor quantum dots with Andreev reflection and Rashba spin–orbit coupling
Ye Cheng-Zhi(叶成芝), Nie Yi-Hang(聂一行), and Liang Jiu-Qing(梁九卿) . Chin. Phys. B, 2011, 20(12): 127202.
No Suggested Reading articles found!