CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields |
Runze Chen(陈润泽)1, Anni Cao(曹安妮)5, Xinran Wang(王馨苒)1,3, Yang Liu(柳洋)1, Hongxin Yang(杨洪新)4, and Weisheng Zhao(赵巍胜)1,2,3,† |
1 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China; 2 Hefei Innovation Research Institute, Beihang University, Hefei 230013, China; 3 Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266000, China; 4 National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 5 Beijing Microelectronics Technology Institute, Beijing 100076, China |
|
|
Abstract Dzyaloshinskii-Moriya interaction (DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall (DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin-orbit coupling (SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime (<10-2 V/nm). Brillouin light scattering (BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI (VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin-orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.
|
Received: 13 September 2023
Revised: 13 November 2023
Accepted manuscript online: 24 November 2023
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61627813, 62204018, and 61571023), the Beijing Municipal Science and Technology Project (Grant No. Z201100004220002), the National Key Technology Program of China (Grant No. 2017ZX01032101), the Program of Introducing Talents of Discipline to Universities in China (Grant No. B16001), and the VR Innovation Platform from Qingdao Science and Technology Commission. |
Corresponding Authors:
Weisheng Zhao
E-mail: weisheng.zhao@buaa.edu.cn
|
Cite this article:
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜) Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields 2024 Chin. Phys. B 33 027501
|
[1] Du A, Zhu D Q, Cao K H, Zhang Z Z, Guo Z X, Shi K W, Xiong D R, Xiao R, Cai W L, Yin J L, Lu S Y, Zhang C, Zhang Y, Luo S J, Fert A and Zhao W S 2023 Nat. Electron. 6 425 [2] Peng S Z, Zhu D Q, Li W X, Wu H, Grutter A J, Gilbert D A, Lu J Q, Xiong D R, Cai W L, Shafer P, Wang K L and Zhao W S 2020 Nat. Electron. 3 757 [3] Wang L D, Cheng H Y, Li P Z, Hees Y L W, Liu Y, Cao K H, Lavrijsen R, Lin X Y, Koopmans B and Zhao W S 2022 Proc. Natl. Acad. Sci. USA 119 e2204732119 [4] Yoda H, Shimomura N, Ohsawa Y, Shirotori S, Kato Y, Inokuchi T, Kamiguchi Y, Altansargai B, Saito Y, Koi K, Sugiyama H, Oikawa S, Shimizu M, Ishikawa M, Ikegami K and Kurobe A 2016 IEEE International Electron Devices Meeting (IEDM), December 3–7, 2016, San Francisco, CA, USA, p. 27.6.1 [5] Peng S Z, Lu J Q, Li W X, Wang L Z, Zhang H, Li X, Wang K L and Zhao W S 2019 IEEE International Electron Devices Meeting (IEDM), December 7–11, 2019, San Francisco, CA, USA, p. 28.6.1 [6] Guo Z X, Yin J L, Bai Y, Zhu D Q, Shi K W, Wang G F, Cao K H and Zhao W S 2021 Proc. IEEE 109 1398 [7] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190 [8] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031 [9] Li S, Du A, Wang Y D, Wang X R, Zhang X Y, Cheng H Y, Cai W L, Lu S Y, Cao K H, Pan B, Lei N, Kang W, Liu J M, Fert A, Hou Z P and Zhao W S 2022 Sci. Bull. 67 691 [10] Cui Q R, Liang J H, Zhu Y M, Yao X and Yang H X 2023 Chin. Phys. Lett. 40 037502 [11] Li H N, Xue T X, Chen L, Sui Y R and Wei M B 2022 Chin. Phys. B 31 097501 [12] Li K K 2023 Chin. Phys. Lett. 40 027502 [13] Wang XR, Cao A N, Li S, Tang J, Du A, Cheng H Y, Sun Y M, Du H F, Zhang X Y and Zhao W S 2021 Phys. Rev. B 104 064421 [14] Kim K W, Lee H W, Lee K J and Stiles M D 2013 Phys. Rev. Lett. 111 216601 [15] Yang H X, Chen G, Cotta A A C, N’Diaye A T, Nikolaev S A, Soares E A, Macedo W A A, Liu K, Schmid A K, Fert A and Chshiev M 2018 Nat. Mater. 17 605 [16] Kundu A and Zhang S 2015 Phys. Rev. B 92 094434 [17] Srivastava T, Schott M, Juge R, Křižáková V, Belmeguenai M, oussigné Y, Bernand-Mantel A, Ranno L, Pizzini S, Chérif S M, Stashkevich A, Auffret S, Boulle O, Gaudin G, Chshiev M, Baraduc C and Béa H 2018 Nano Lett. 18 4871 [18] Zhang W, Zhong H, Zang R, Zhang Y, Yu S, Han G, Liu G L, Yan S S, Kang S and Mei L M 2018 Appl. Phys. Lett. 113 122406 [19] Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Béa H, Baraduc C, Auffret S, Gaudin G and Givord D 2017 Nano Lett. 17 3006 [20] Hsu P J, Kubetzka A, Finco A, Romming N, Bergmann K V and Wiesendanger R 2017 Nat. Nanotechnol. 12 123 [21] Nozaki T, Jibiki Y, Goto M, Tamura E, Nozaki T, Kubota H, Fukushima A, Yuasa S and Suzuki Y 2019 Appl. Phys. Lett. 114 012402 [22] Yu Z Y, Shen M K, Zeng Z M, Liang S H, Liu Y, Chen M, Zhang Z H, Lu Z H, You L, Yang X F, Zhang Y and Xiong R 2020 Nanoscale Adv. 2 1309 [23] Luo S J, Xu N, Guo Z, Zhang Y, Hong J and You L 2019 IEEE Electron Dev. Lett. 40 635 [24] Zhang Z Z, Zhu Y Z, Zhang Y, Zhang K, Nan J, Zheng Z Y, Zhang Y G and Zhao W S 2019 IEEE Electron Dev. Lett. 40 1984 [25] Cao A N, Zhang X Y, Koopmans B, Peng S Z, Zhang Y, Wang Z L, Yan S H, Yang H X and Zhao W S 2018 Nanoscale 10 12062 [26] Cao A N, Chen R Z, Wang X R, Zhang X Y, Lu S Y, Yan S S, Koopmans B and Zhao W S 2020 Nanotechnology 31 155705 [27] Nembach H T, Shaw J M, Weiler M, Jué E and Silva T J 2015 Nat. Phys. 11 825 [28] Ma X, Yu G Q, Li X, Wang T, Wu D, Olsson K S, Chu Z D, An K, Xiao J Q, Wang K L and Li X Q 2016 Phys. Rev. B 94 180408 [29] Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S and Adeyeye A O 2009 Appl. Phys. Lett. 94 083112 [30] Ma X, Yu G Q, Tang C, Li X, He C L, Shi J, Wang K L and Li X Q 2018 Phys. Rev. Lett. 120 157204 [31] Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Qiu X P and Yang H 2015 Appl. Phys. Lett. 106 052403 [32] Belmeguenai M, Adam J P, Roussigné Y, Eimer S, Devolder T, Kim J V, Cherif S M, Stashkevich A and Thiaville A 2015 Phys. Rev. B 91 180405 [33] Belmeguenai M, Roussigne Y, Cherif S M, Stashkevich A, Petrisor J T, Nasui M and Gabor M S 2019 J. Phys. D: Appl. Phys. 52 125002 [34] Neugebauer J and Matthias S 1992 Phys. Rev. B 46 16067 [35] Yang H X, Boulle O, Cros V, Fert A and Chshiev M 2018 Sci. Rep. 8 12356 [36] Suwardy J, Goto M, Suzuki Y and Miwa S 2019 Jpn. J. Appl. Phys. 58 060917 [37] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871 [38] Kikuchi T, Koretsune T, Arita R and Tatara G 2016 Phys. Rev. Lett. 116 247201 [39] Yang B S, Cui Q R, Liang J H, Chshiev M and Yang H X 2020 Phys. Rev. B 101 014406 [40] Belabbes A, Bihlmayer G, Blügel S and Manchon A 2016 Sci. Rep. 6 24634 [41] Kashid V, Schena T, Zimmermann B, Mokrousov Y, Blügel S, Shah V and Salunke H G 2014 Phys. Rev. B 90 054412 [42] Chen R Z, Wang X R, Cheng H Y, Lee K J, Xiong D R, Kim J Y, Li S, Yang H X, Zhang H C, Cao K H, Kläui M, Peng S Z, Zhang X Y and Zhao W S 2021 Cell Rep. Phys. Sci. 2 100618 [43] Jadaun P, Register L F and Banerjee S K 2020 npj Comput. Mater. 6 88 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|