|
|
Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions |
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮) |
Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China |
|
|
Abstract In this work, we study the quantum steering in two-qubit Heisenberg models with Dzyaloshinskii-Moriya (DM) interaction and an external magnetic field. We find that the steerable weight (SW) and the critical temperature where SW→0 can be enhanced by the DM interactions. In the special case where the magnetic field is vanishing and the two spins are ferromagnetically coupled, the DM interaction can tune the zero-temperature SW from zero to a finite value. In addition to the SW, some other measurements used to identify the quantum entanglement and quantum correlations are investigated, i.e., the concurrence, the quantum discord, and the robustness of coherence. In the strong magnetic field limit, our results show that the SW is dramatically different from the other measurements.
|
Received: 15 July 2018
Revised: 09 September 2018
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.10.Pq
|
(Spin chain models)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504106, 11805065, 11247308, and 11447167) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2018MS049 and 2018MS056). |
Corresponding Authors:
Liang Chen
E-mail: slchern@ncepu.edu.cn
|
Cite this article:
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮) Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions 2018 Chin. Phys. B 27 120304
|
[1] |
Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
|
[2] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[3] |
Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
|
[4] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[5] |
Ren X J and Fan H 2012 J. Phys. A: Math. Theor. 45 425304
|
[6] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[7] |
Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
|
[8] |
Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555563
|
[9] |
Schrödinger E 1936 Math. Proc. Cambridge Philos. Soc. 32 446452
|
[10] |
Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
|
[11] |
Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
|
[12] |
Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116
|
[13] |
Skrzypczyk P, Navascués M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404
|
[14] |
Bowles J, Vértesi T, Quintino M T and Brunner N 2014 Phys. Rev. Lett. 112 200402
|
[15] |
He Q Y, Gong Q H and Reid M D 2015 Phys. Rev. Lett. 114 060402
|
[16] |
Kogias I, Lee A R, Ragy S and Adesso G 2015 Phys. Rev. Lett. 114 060403
|
[17] |
Bowles J, Francfort J, Fillettaz M, Hirsch F and Brunner N 2016 Phys. Rev. Lett. 116 130401
|
[18] |
Bowles J, Hirsch F, Quintino M T and Brunner N 2016 Phys. Rev. A 93 022121
|
[19] |
Sun W Y, Wang D, Shi J D and Ye L 2017 Sci. Rep. 7 39651
|
[20] |
Saunders D J, Jones S J, Wiseman H M and Pryde G J 2010 Nat. Phys. 6 845
|
[21] |
Kocsis S, Hall M J W, Bennet A J, Saunders D J and Pryde G J 2015 Nat. Commun. 6 5886
|
[22] |
Sun K, Xu J S, Ye X J, Wu Y C, Chen J L, Li C F and Guo G C 2014 Phys. Rev. Lett. 113 140402
|
[23] |
Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F and Guo G C 2016 Phys. Rev. Lett. 116 160404
|
[24] |
Wollmann S, Walk N, Bennet A J, Wiseman H M and Pryde G J 2016 Phys. Rev. Lett. 116 160403
|
[25] |
He Q, Rosales-Zárate L, Adesso G and Reid M D 2015 Phys. Rev. Lett. 115 180502
|
[26] |
Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman, H M 2012 Phys. Rev. A 85 010301
|
[27] |
Paul T 2007 Math. Struct. Comp. Sci. 17 1115
|
[28] |
Qian L and Fang J X 2009 Commun. Theor. Phys. 52 817
|
[29] |
Li D C, Wang X P and Cao Z L 2008 J. Phys.: Condens. Matter 20 325229
|
[30] |
Ma X S, Cheng M T, Zhao G X and Wang A M 2012 Physica A 391 2500
|
[31] |
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
|
[32] |
Gallego R and Aolita L 2015 Phys. Rev. X 5 041008
|
[33] |
Chen L and Zhang Y Q 2017 Europhys. Lett. 120 60007
|
[34] |
Khan S and Khan K 2016 Eur. Phys. J. Plus 131 1
|
[35] |
Zad H A and Movahhedian H 2017 Int. J. Mod. Phys. B 31 1750094
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|