CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic proximity effect in the two-dimensional ε-Fe2O3/NbSe2 heterojunction |
Bingyu Che(车冰玉)1,2,†, Guojing Hu(胡国静)1,†, Chao Zhu(朱超)3, Hui Guo(郭辉)1,2, Senhao Lv(吕森浩)1, Xuanye Liu(刘轩冶)1,2, Kang Wu(吴康)1,2, Zhen Zhao(赵振)1,2, Lulu Pan(潘禄禄)1, Ke Zhu(祝轲)1,2, Qi Qi(齐琦)1,2, Yechao Han(韩烨超)1,2, Xiao Lin(林晓)2, Zi'an Li(李子安)4, Chengmin Shen(申承民)1,2, Lihong Bao(鲍丽宏)1,2, Zheng Liu(刘政)3,¶, Jiadong Zhou(周家东)5,§, Haitao Yang(杨海涛)1,2,‡, and Hong-Jun Gao(高鸿钧)1,2 |
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 School of Materials Science and Engineering, Nanyang Technological University, Singapore; 4 School of Physical Science and Technology, Guangxi University, Guangxi 530004, China; 5 School of Physics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Two-dimensional (2D) magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects. However, plagued by the low Curie temperature and instability in air, it is hard to realize practical applications for the reported layered magnetic materials at present. In this paper, we developed a space-confined chemical vapor deposition method to synthesize ultrathin air-stable ε-Fe2O3 nanosheets with Curie temperature above 350 K. The ε-Fe2O3/NbSe2 heterojunction was constructed to study the magnetic proximity effect on the superconductivity of the NbSe2 multilayer. The electrical transport results show that the subtle proximity effect can modulate the interfacial spin-orbit interaction while undegrading the superconducting critical parameters. Our work paves the way to construct 2D heterojunctions with ultrathin nonlayered materials and layered van der Waals (vdW) materials for exploring new physical phenomena.
|
Received: 17 September 2023
Revised: 28 October 2023
Accepted manuscript online: 06 November 2023
|
PACS:
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
75.75.Cd
|
(Fabrication of magnetic nanostructures)
|
|
75.70.Tj
|
(Spin-orbit effects)
|
|
Fund: We thank Gangqin Liu for the helpful discussions. The work is supported by the National Key Research and Development Program of China (Grant No. 2022YFA1204104), the National Natural Science Foundation of China (Grant No. 61888102), the Chinese Academy of Sciences (Grant Nos. ZDBS-SSW-WHC001 and XDB33030100). |
Corresponding Authors:
Haitao Yang, Jiadong Zhou, Zheng Liu
E-mail: htyang@iphy.ac.cn;jdzhou@bit.edu.cn;z.liu@ntu.edu.sg
|
Cite this article:
Bingyu Che(车冰玉), Guojing Hu(胡国静), Chao Zhu(朱超), Hui Guo(郭辉), Senhao Lv(吕森浩), Xuanye Liu(刘轩冶), Kang Wu(吴康), Zhen Zhao(赵振), Lulu Pan(潘禄禄), Ke Zhu(祝轲), Qi Qi(齐琦), Yechao Han(韩烨超), Xiao Lin(林晓), Zi'an Li(李子安), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Zheng Liu(刘政), Jiadong Zhou(周家东), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) Magnetic proximity effect in the two-dimensional ε-Fe2O3/NbSe2 heterojunction 2024 Chin. Phys. B 33 027502
|
[1] Lee C, Katmis F, Jarillo-Herrero P, Moodera J S and Gedik N 2016 Nat. Commun. 7 12014 [2] Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freeland J W, Eremin I, Heiman D, Jarillo-Herrero P and Moodera J S 2016 Nature 533 513 [3] MacDonald A H, Schiffer P and Samarth N 2005 Nat. Mater. 4 195 [4] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K C and Xu X 2017 Sci. Adv. 3 e1603113 [5] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M and Xu X 2018 Nano Lett. 18 3823 [6] Zhao C, Norden T, Zhang P, Zhao P, Cheng Y, Sun F, Parry J P, Taheri P, Wang J, Yang Y, Scrace T, Kang K, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A and Zeng H 2017 Nat. Nanotechnol. 12 757 [7] Buzdin A I 2005 Rev. Mod. Phys. 77 935 [8] Bergeret F S, Volkov A F and Efetov K B 2005 Rev. Mod. Phys. 77 1321 [9] Eschrig M 2015 Reports on Progress in Physics 78 104501 [10] Beenakker C W J 2013 Annual Review of Condensed Matter Physics 4 113 [11] Aikebaier F, Heikkilä T T and Lado J L 2022 Phys. Rev. B 105 054506 [12] Yao Y, Zhan X, Sendeku M G, Yu P, Dajan F T, Zhu C, Li N, Wang J, Wang F, Wang Z and He J 2021 Nanotechnology 32 472001 [13] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chemistry of Materials 27 612 [14] Dillon J F and Olson C E 1965 J. Appl. Phys. 36 1259 [15] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [16] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 [17] Zhao B, Ngaloy R, Ghosh S, Ershadrad S, Gupta R, Ali K, Hoque A M, Karpiak B, Khokhriakov D, Polley C, Thiagarajan B, Kalaboukhov A, Svedlindh P, Sanyal B and Dash S P 2023 Adv. Mater. 35 2209113 [18] May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X and McGuire M A 2019 ACS Nano 13 4436 [19] Cornell R M and Schwertmann U 2003 The iron oxides: structure, properties, reactions, occurrences, and uses (Weinheim: Wiley-vch) pp. 111-137 [20] Kelm K and Mader W 2005 Z. Anorg. Allg. Chem. 631 2383 [21] Gich M, Frontera C, Roig A, Taboada E, Molins E, Rechenberg H R, Ardisson J D, Macedo W A A, Ritter C, Hardy V, Sort J, Skumryev V and Nogués J 2006 Chemistry of Materials 18 3889 [22] Tuček J, Zbořil R, Namai A and Ohkoshi S I 2010 Chemistry of Materials 22 6483 [23] Yuan J, Balk A, Guo H, Fang Q, Patel S, Zhao X, Terlier T, Natelson D, Crooker S and Lou J 2019 Nano Lett. 19 3777 [24] Wang Y, Wang P, Wang H, Xu B, Li H, Cheng M, Feng W, Du R, Song L, Wen X, Li X, Yang J, Cai Y, He J, Wang Z and Shi J 2023 Adv. Mater. 35 2209465 [25] Zhao Z, Fang Z, Han X, Yang S, Zhou C, Zeng Y, Zhang B, Li W, Wang Z, Zhang Y, Zhou J, Zhou J, Ye Y, Hou X, Zhao X, Gao S and Hou Y 2023 Nat. Commun. 14 958 [26] Liu S, Wang S, Guo J and Guo Q 2012 RSC Advances 2 9938 [27] Xue M, Wang S, Wu K, Guo J and Guo Q 2011 Langmuir 27 11 [28] López-Sánchez J, Serrano A, Del Campo A, Abuín M, Rodríguez de la Fuente O and Carmona N 2016 Chemistry of Materials 28 511 [29] Gich M, Roig A, Frontera C, Molins E, Sort J, Popovici M, Chouteau G, Martín y Marero D and Nogués J 2005 J. Appl. Phys. 98 044307 [30] Sakurai S, Jin J, Hashimoto K and Ohkoshi S I 2005 J. Phys. Soc. Jpn. 74 1946 [31] Frindt R F 1972 Phys. Rev. Lett. 28 299 [32] Dvir T, Massee F, Attias L, Khodas M, Aprili M, Quay C H L and Steinberg H 2018 Nat. Commun. 9 598 [33] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H-Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X and Crommie M F 2016 Nat. Phys. 12 92 [34] Ahamed I, Pathak R, Skomski R and Kashyap A 2018 AIP Advances 8 055815 [35] Tinkham M and Emery V 1996 Physics Today 49 74 [36] Uji S, Terashima T, Nishimura M, Takahide Y, Konoike T, Enomoto K, Cui H, Kobayashi H, Kobayashi A, Tanaka H, Tokumoto M, Choi E S, Tokumoto T, Graf D and Brooks J S 2006 Phys. Rev. Lett. 97 157001 [37] Jiang D, Yuan T, Wu Y, Wei X, Mu G, An Z and Li W 2020 ACS Applied Materials & Interfaces 12 49252 [38] Khanukov A, Mangel I, Wissberg S, Keren A and Kalisky B 2022 Phys. Rev. B 106 144510 [39] He J J, Tanaka Y and Nagaosa N 2022 New J. Phys. 24 053014 [40] Bauriedl L, Bäuml C, Fuchs L, Baumgartner C, Paulik N, Bauer J M, Lin K Q, Lupton J M, Taniguchi T, Watanabe K, Strunk C and Paradiso N 2022 Nat. Commun. 13 4266 [41] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139 [42] Zhang E, Xu X, Zou Y C, Ai L, Dong X, Huang C, Leng P, Liu S, Zhang Y, Jia Z, Peng X, Zhao M, Yang Y, Li Z, Guo H, Haigh S J, Nagaosa N, Shen J and Xiu F 2020 Nat. Commun. 11 5634 [43] Hoshino S, Wakatsuki R, Hamamoto K and Nagaosa N 2018 Phys. Rev. B 98 054510 [44] Ando F, Miyasaka Y, Li T, Ishizuka J, Arakawa T, Shiota Y, Moriyama T, Yanase Y and Ono T 2020 Nature 584 373 [45] Baumgartner C, Fuchs L, Costa A, Reinhardt S, Gronin S, Gardner G C, Lindemann T, Manfra M J, Faria Junior P E, Kochan D, Fabian J, Paradiso N and Strunk C 2022 Nat. Nanotechnol. 17 39 [46] Yuan N F Q and Fu L 2022 Proc. Natl. Acad. Sci. USA 119 e2119548119 [47] Ilić S and Bergeret F 2022 Phys. Rev. Lett. 128 177001 [48] Bian M, Zhu L, Wang X, Choi J, Chopdekar R V, Wei S, Wu L, Huai C, Marga A, Yang Q, Li Y C, Yao F, Yu T, Crooker S A, Cheng X M, Sabirianov R F, Zhang S, Lin J, Hou Y and Zeng H 2022 Adv. Mater. 34 2200117 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|