|
|
Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction |
Qiao Jie (谯洁), Zhou Bin (周斌) |
Department of Physics, Hubei University, Wuhan 430062, China |
|
|
Abstract We investigate the thermal entanglement in a spin-1/2 Ising-Heisenberg diamond chain, in which the vertical Heisenberg spin dimers alternate with single Ising spins. Due to the fact that the Dzyaloshinskii-Moriya (DM) interaction contributes to unusual and interesting magnetic properties in actual materials, and moreover it plays a significant role in the degree of the entanglement of the Heisenberg quantum spin systems, we focus on the effects of different DM interactions, including Dz and Dx, on the thermal entanglement of the Heisenberg spin dimer. The concurrence, as a measure of spin dimer entanglement, is calculated for different values of exchange interactions, DM interaction, external magnetic field, and temperature. It is found that the critical temperature and the critical magnetic field corresponding to the vanishing of entanglement increase with DM interaction, and the entanglement revival region gets larger by increasing DM interaction, thus DM interaction favors the formation of the thermal entanglement. It is observed that different DM interaction parameters (Dz and Dx) have remarkably different influences on the entanglement. Different from the case Dz, there is the non-monotonic variation of the concurrence with temperature in the case Dx, and additionally the DM interaction Dx can induce the entanglement near zero temperature in the case that the antiferromagnetic Ising-type interaction constant is larger than the antiferromagnetic Heisenberg interaction constant. It is also shown that for the same value of DM interaction the critical magnetic field of the case Dx is larger than that of the case Dz.
|
Received: 12 March 2015
Revised: 26 July 2015
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
75.10.Pq
|
(Spin chain models)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001). |
Corresponding Authors:
Zhou Bin
E-mail: binzhou@hubu.edu.cn
|
Cite this article:
Qiao Jie (谯洁), Zhou Bin (周斌) Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction 2015 Chin. Phys. B 24 110306
|
[1] |
Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
|
[2] |
Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
|
[3] |
Nielsen M A 2000 arXiv:quant-ph/0011036
|
[4] |
Wang X 2001 Phys. Rev. A 64 012313
|
[5] |
Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
|
[6] |
Xi X Q, Hao S R, Chen W X and Yue R H 2002 Chin. Phys. Lett. 19 1044
|
[7] |
Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
|
[8] |
Sun Y, Chen Y and Chen H 2003 Phys. Rev. A 68 044301
|
[9] |
Canosa N and Rossignoli R 2004 Phys. Rev. A 69 052306
|
[10] |
Cao M and Zhu S 2005 Phys. Rev. A 71 034311
|
[11] |
Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
|
[12] |
Wang Y F, Cao J P and Wang Y P 2005 Chin. Phys. Lett. 22 2151
|
[13] |
Chen S R, Xia Y J and Man Z X 2010 Chin. Phys. B 19 050304
|
[14] |
Ren J Z, Shao X Q, Zhang S and Yeon K H 2010 Chin. Phys. B 19 100307
|
[15] |
Ghosh S, Rosenbaum T F, Aeppli G and Coppersmith S N 2003 Nature 425 48
|
[16] |
Vértesi T and Bene E 2006 Phys. Rev. B 73 134404
|
[17] |
Rappoport T G, Ghivelder L, Fernandes J C, Guimarães R B and Continentino M A 2007 Phys. Rev. B 75 054422
|
[18] |
Souza A M, Reis M S, Soares-Pinto D O, Oliveira I S and Sarthour R S 2008 Phys. Rev. B 77 104402
|
[19] |
Takano K, Kubo K and Sakamoto H 1996 J. Phys.: Condens. Matter 86405
|
[20] |
Okamoto K, Tonegawa T, Takahashi Y and Kaburagi M 1999 J. Phys.: Condens. Matter 11 10485
|
[21] |
Honecker A and Läuchli A 2001 Phys. Rev. B 63 174407
|
[22] |
Okamoto K, Tonegawa T and Kaburagi M 2003 J. Phys.: Condens. Matter 15 5979
|
[23] |
Takano K, Suzuki H and Hida K 2009 Phys. Rev. B 80 104410
|
[24] |
Pereira M S S, de Moura F A B F and Lyra M L 2009 Phys. Rev. B 79 054427
|
[25] |
Jeschke H, Opahle I, Kandpal H, Valentí R, Das H, Saha-Dasgupta T, Janson O, Rosner H, Brühl A, Wolf B, Lang M, Richter J, Hu S, Wang X, Peters R, Pruschke T and Honecker A 2011 Phys. Rev. Lett. 106 217201
|
[26] |
Kikuchi H, Fujii Y, Chiba M, Mitsudo S and Idehara T 2003 Physica B 329 967
|
[27] |
Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
|
[28] |
Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Kindo K, Matsuo A, Higemoto W, Nishiyama K, HorvatićMand Bertheir C 2005 Prog. Theor. Phys. Supplement 159 1
|
[29] |
Rule K C, Wolter A U B, Süllow S, Tennant D A, Brühl A, Köhler S, Wolf B, Lang M and Schreuer J 2008 Phys. Rev. Lett. 100 117202
|
[30] |
Rule K C, Reehuis M, Gibson M C R, Ouladdiaf B, Gutmann M J, Hoffmann J U, Gerischer S, Tennant D A, Süllow S and Lang M 2011 Phys. Rev. B 83 104401
|
[31] |
Jaščur M and Strečka J 2004 J. Magn. Magn. Mater. 272–276 984
|
[32] |
Čanová L, Strečka J and Jasčŭr M 2006 J. Phys.: Condens. Matter 18 4967
|
[33] |
Strečka J, Čanová L, Lučivjanský T and Jasčŭr M 2009 J. Phys.: Conf. Series 145 012058
|
[34] |
Valverde J S, Rojas O and de Souza S M 2008 J. Phys.: Condens. Matter 20 345208
|
[35] |
Čanová L, Strečka J and Lučivjanský T 2009 Condens. Matter Phys. 12 353
|
[36] |
Rojas O, de Souza S M, Ohanyan V and Khurshudyan M 2011 Phys. Rev. B 83 094430
|
[37] |
Gálisová L 2013 Phys. Status Solidi B 250 187
|
[38] |
Ananikian N S, Strečka J and Hovhannisyan V 2014 Solid State Commun. 194 48
|
[39] |
Ananikian N S, Ananikyan L N, Chakhmakhchyan L A and Rojas O 2012 J. Phys.: Condens. Matter 24 256001
|
[40] |
Rojas O, Rojas M, Ananikian N S and de Souza S M 2012 Phys. Rev. A 86 042330
|
[41] |
Torrico J, Rojas M, de Souza S M, Rojas O and Ananikian N S 2014 Europhys. Lett. 108 50007
|
[42] |
Abgaryan V S, Ananikian N S, Ananikyan L N and Hovhannisyan V 2015 Solid State Commun. 203 5
|
[43] |
Dzyaloshinski I 1958 J. Phys. Chem. Solids 4 241
|
[44] |
Moriya T 1960 Phys. Rev. 120 91
|
[45] |
Wang X G and Zanardi P 2001 Phys. Lett. A 281 101
|
[46] |
Zhang G F 2007 Phys. Rev. A 75 034304
|
[47] |
Li D C, Wang X P and Cao Z L 2008 J. Phys. Condens. Matter 20 325229
|
[48] |
Mehran E, Mahdavifar S and Jafari R 2014 Phys. Rev. A 89 042306
|
[49] |
Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
|
[50] |
Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|