Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 024301    DOI: 10.1088/1674-1056/ad0717
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Behaviors of cavitation bubbles driven by high-intensity ultrasound

Chen-Yang Huang(黄晨阳), Fan Li(李凡), Shi-Yi Feng(冯释毅), Cheng-Hui Wang(王成会), Shi Chen(陈时)§, Jing Hu(胡静), Xin-Rui He(何芯蕊), and Jia-Kai Song(宋家凯)
Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
Abstract  In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentration cavitation nuclei, evolutions of bubbles are recorded by a high-speed camera, and translational trajectories of several representative bubbles are traced. It is found that translational motion of bubbles is always accompanied by the fragmentation and coalescence of bubbles, and for bubbles smaller than 10 μ, the possibility of bubble coalescence is enhanced when the spacing of bubbles is less than 30 μ. The measured signals and their spectra show the presence of strong negative pressure, broadband noise, and various harmonics, which implies that multiple interactions of bubbles appear in the region of high-intensity cavitation. Due to the strong coupling effect, the interaction between bubbles is random. A simplified triple-bubble model is developed to explore the interaction patterns of bubbles affected by the surrounding bubbles. Patterns of bubble interaction, such as attraction, repulsion, stable spacing, and rebound of bubbles, can be predicted by the theoretical analysis, and the obtained results are in good agreement with experimental observations. Mass exchange between the liquid and bubbles as well as absorption in the cavitation nuclei also plays an important role in multi-bubble cavitation, which may account for the weakening of the radial oscillations of bubbles.
Keywords:  ultrasonic cavitation      multi-bubble system      translational motion of bubbles  
Received:  23 August 2023      Revised:  19 October 2023      Accepted manuscript online:  26 October 2023
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  47.55.dd (Bubble dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974232 and 12374441) and the Fund from the Yulin Science and Technology Bureau, China (Grant No. CXY-2022-178).
Corresponding Authors:  Cheng-Hui Wang, Shi Chen     E-mail:  wangld001@snnu.edu.cn;chenshi@snnu.edu.cn

Cite this article: 

Chen-Yang Huang(黄晨阳), Fan Li(李凡), Shi-Yi Feng(冯释毅), Cheng-Hui Wang(王成会), Shi Chen(陈时), Jing Hu(胡静), Xin-Rui He(何芯蕊), and Jia-Kai Song(宋家凯) Behaviors of cavitation bubbles driven by high-intensity ultrasound 2024 Chin. Phys. B 33 024301

[1] Ida M, Naoe T and Futakawa M 2007 Phys. Rev. E 76 046309
[2] Shen Y, Zhang L, Wu Y and Chen W 2021 Ultrason. Sonochem. 73 105535
[3] Li T, Zhang A M, Wang S P, Chen G Q and Li S 2019 Phys. Fluids 31 092108
[4] Morton J A, Khavari M, Priyadarshi A, Kaur A, Grobert N, Mi J, Porfyrakis K, Prentice P, Eskin D G and Tzanakis I 2023 Phys. Fluids 35 017135
[5] Yamakoshi Y, Ozawa Y, Ida M and Masuda N 2001 Jpn. J. Appl. Phys. 40 3852
[6] Cui P, Zhang A M and Wang S P 2021 Ocean Eng. 234 109175
[7] Haghi H, Sojahrood A J and Kolios M C 2019 Ultrason. Sonochem. 58 104708
[8] Goh B H T, Ohl S W, Klaseboer E and Khoo B C 2014 Phys. Fluids 26 221
[9] Van Der Kroon I, Quinto-Su P A, Li F and Ohl C D 2010 Phys. Rev. E 82 066311
[10] Yamamoto T and Komarov S V 2021 Ultrason. Sonochem. 78 105734
[11] Lanoy M, Derec C, Tourin A and Leroy V 2015 Appl. Phys. Lett. 107 214101
[12] Doinikov A A 2001 Phys. Rev. E 64 026301
[13] Doinikov A A 2004 J. Acoust. Soc. Am. 116 821
[14] Zilonova E, Solovchuk M and Sheu T W H 2019 Phys. Rev. E 99 023109
[15] Wang X, Chen W, Zhou M, Zhang Z and Zhang L 2022 Ultrason. Sonochem. 84 105952
[16] Žnidarčič A, Mettin R and Dular M 2015 Ultrason. Sonochem. 22 482
[17] Yasui K, Iida Y, Tuziuti T, Kozuka T and Towata A 2008 Phys. Rev. E 77 016609
[18] Žnidarčič A, Mettin R, Cairós C and Dular M 2014 Phys. Fluids 26 023304
[19] Birkin P R, Offin D G, Vian C J B and Leighton T G 2011 J. Acoust. Soc. Am. 130 3379
[20] Dubus B, Vanhille C, Campos-Pozuelo C and Granger C 2010 Ultrason. Sonochem. 17 810
[21] Versluis M, Schmitz B, Von der Heydt A and Lohse D 2000 Science. 289 2114
[22] Ida M 2009 Phys. Rev. E 79 016307
[23] Shaw S J 2017 Phys. Fluids 29 122103
[24] Wu Y, Chen W, Zhang L, Shen Y and Zhao G 2022 J. Acoust. Soc. Am. 151 888
[25] Lawless J, Keeler J, Gaillard A, Hazel A and Juel A 2022 Sci. Rep. 12 20752
[26] Nguyen Q T, Nguyen V T, Phan T H, Duy T N, Park S H and Park W G 2023 Phys. Fluids 35 013306
[27] Yasui K 1996 J. Phys. Soc. Jpn. 65 2830
[28] Al Bishtawi B, Mustapha K B and Scribano G 2022 Phys. Fluids 34 113303
[29] Yasui K 2023 Ultrason. Sonochem. 93 106276
[30] Tzanakis I, Lebon G S B, Eskin D G and Pericleous K A 2017 Ultrason. Sonochem. 34 651
[31] Moholkar V S, Sable S P and Pandit A B 2000 AIChE J. 46 684
[32] Wu P, Wang X, Lin W and Bai L 2022 Ultrason. Sonochem. 82 105878
[33] Saalbach K A, Twiefel J and Wallaschek J 2019 Ultrasonics 94 401
[34] Mettin R, Akhatov I, Parlitz U, Ohl C D and Lauterborn W 1997 Phys. Rev. E 56 2924
[35] Zhang L, Chen W, Shen Y, Wu Y and Zhao G 2021 Chaos, Solitons and Fractals 152 111322
[36] Hatanaka S I, Yasui K, Kozuka T, Tuziuti T and Mitome H 2002 Ultrasonics 40 655
[37] Chen H, Chen Z and Li Y 2020 Ultrason. Sonochem. 61 104814
  • 1. .mp4(317KB)

  • 2. .mp4(152KB)

  • 3. .mp4(271KB)

  • 4. .mp4(269KB)

  • 5. .mp4(508KB)

  • 6. .mp4(265KB)

  • 7. .mp4(190KB)

[1] Discrete multi-step phase hologram for high frequency acoustic modulation
Meng-Qing Zhou(周梦晴), Zhao-Xi Li(李照希), Yi Li(李怡), Ye-Cheng Wang(王业成), Juan Zhang(张娟), Dong-Dong Chen(谌东东), Yi Quan(全熠), Yin-Tang Yang(杨银堂), and Chun-Long Fei(费春龙). Chin. Phys. B, 2024, 33(1): 014303.
[2] Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators
Yu-Wei Xu(许雨薇), Yi-Jun Guan(管义钧), Cheng-Hao Wu(吴成昊), Yong Ge(葛勇), Qiao-Rui Si(司乔瑞), Shou-Qi Yuan(袁寿其), and Hong-Xiang Sun(孙宏祥). Chin. Phys. B, 2023, 32(12): 124303.
[3] Characteristic analysis of scattering field in two-layer media by Green's function
Ping Zhang(张萍), Zhi-Ying Liu(刘智颖), Shou-Guo Yan(阎守国), Juan Huang(黄娟), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2023, 32(6): 064301.
[4] Bubble nucleation in spherical liquid cavity wrapped by elastic medium
Xian-Mei Zhang(张先梅), Fan Li(李凡), Cheng-Hui Wang(王成会), Jing Hu(胡静), Run-Yang Mo(莫润阳), Zhuang-Zhi Shen(沈壮志), Jian-Zhong Guo(郭建中), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(6): 064303.
[5] Effect of magnetic field on expansion of ferrofluid-encapsulated microbubble
Zhiwei Du(杜芷玮), Fan Li(李凡), Ruiqi Pan(潘瑞琪), Runyang Mo(莫润阳), and Chenghui Wang(王成会). Chin. Phys. B, 2023, 32(6): 064302.
[6] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[7] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[8] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[9] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[10] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[11] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[12] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[13] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[14] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[15] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
No Suggested Reading articles found!