CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals |
Yong Nie(聂勇)1,2, Zheng Chen(陈正)1, Wensen Wei(韦文森)1, Huijie Li(李慧杰)1, Yong Zhang(张勇)2, Ming Mei(梅明)1,2, Yuanyuan Wang(王园园)1,2, Wenhai Song(宋文海)3, Dongsheng Song(宋东升)4, Zhaosheng Wang(王钊胜)1,†, Xiangde Zhu(朱相德)1,‡, Wei Ning(宁伟)1,§, and Mingliang Tian(田明亮)1,5 |
1 Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 Department of Physics, University of Science and Technology of China, Hefei 230026, China; 3 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 4 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 5 School of Physics, Anhui University, Hefei 230601, China |
|
|
Abstract We report a systematic study on layered metal SrCu4-xP2 single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30 T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at Tp ~ 140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e., ΔLc/Lc~ 0.062%. The structural characterization confines that there is no structure transition below and above Tp. All these results suggest that the nonmagnetic transition of SrCu4-xP2 could be associated with structural distortion.
|
Received: 14 July 2023
Revised: 27 August 2023
Accepted manuscript online: 06 September 2023
|
PACS:
|
61.66.-f
|
(Structure of specific crystalline solids)
|
|
65.40.Ba
|
(Heat capacity)
|
|
65.60.+a
|
(Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)
|
|
72.20.My
|
(Galvanomagnetic and other magnetotransport effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1607403,2021YFA1600201, and 2022YFA1602603), the Natural Science Foundation of China (Grant Nos. U19A2093, U2032214, and U2032163), the Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2019HSC-CIP 001), the Youth Innovation Promotion Association of CAS (Grant No. 2021117), the Natural Science Foundation of Anhui Province (No.1908085QA15), the HFIPS Director’s Fund (Grant No. YZJJQY202304), and the CASHIPS Director’s Fund (Grant No. YZJJ2022QN36). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province. |
Corresponding Authors:
Zhaosheng Wang, Xiangde Zhu, Wei Ning
E-mail: zswang@hmfl.ac.cn;xdzhu@hmfl.ac.cn;ningwei@hmfl.ac.cn
|
Cite this article:
Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮) Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals 2024 Chin. Phys. B 33 016108
|
[1] Stoyko S S, Khatun M, Scott Mullen C and Mar A 2012 J. Solid State Chem. 192 325 [2] Dünner J and Mewis A 1999 Z. Anorg. Allg. Chem. 625 625 [3] Pfisterer M and Nagorsen G 1982 Z. Naturforsch B 37 420 [4] Li L, Yang Z, Su Q, Yang J, Chen B, Du J, Wu C, Wang H and Fang M 2022 J. Alloys Compd. 916 165460 [5] Hadjiev V G, Lv B and Chu C W 2011 Phys. Rev. B 84 073105 [6] Shen B, Hu C W, Cao H B, Gui X, Emmanouilidou E, Xie W W and Ni N 2020 Phys. Rev. Mater. 4 064419 [7] Zhu Q, Li L, Yang Z, Lou Z, Du J, Yang J, Chen B, Wang H and Fang M 2020 Sci. China:Phys. Mech. Astron. 64 227011 [8] Shen B, Emmanouilidou E, Deng X Y, McCollam A, Xing J, Kotliar G, Coldea A I and Ni N 2018 Phys. Rev. B 98 235130 [9] Ryan D H, Budko S L, Hu C and Ni N 2019 AIP Advances 9 125050 [10] Weise W and Schuster H U 1986 Z. Anorg. Allg. Chem. 535 143 [11] Demchyna R O, Chykhrij S I and Kuz'ma Y B 2002 J. Alloys Compd. 345 170 [12] Mewis A 1980 Z. Naturforsch B 35 942 [13] Dünner J and Mewis A 1997 Z. Anorg. Allg. Chem. 623 608 [14] Gerke B, Schwickert C, Stoyko S S, Khatun M, Mar A and Pottgen R 2013 Solid State Sci. 20 65 [15] Sasmal S, Saini V, Ramakrishnan S, Dwari G, Maity B B, Bao J K, Mondal R, Tripathi V, van Smaalen S, Singh B and Thamizhavel A 2022 Phys. Rev. Res. 4 L012011 [16] Bud'ko S L, Xiang L, Hu C W, Shen B, Ni N and Canfield P C 2020 Phys. Rev. B 101 195112 [17] Lin J C, Tong P, Tong W, Lin S, Wang B S, Song W H, Zou Y M and Sun Y P 2015 Appl. Phys. Lett. 106 082405 [18] Kuchler R, Worl A, Gegenwart P, Berben M, Bryant B and Wiedmann S 2017 Rev. Sci. Instrum. 88 083903 [19] Abrikosov A A 2017 Fundamentals of the Theory of Metals (Courier Dover Publications) [20] Narayanan A, Watson M, Blake S, Bruyant N, Drigo L, Chen Y, Prabhakaran D, Yan B, Felser C and Kong T 2015 Phys. Rev. Lett. 114 117201 [21] Novak M, Sasaki S, Segawa K and Ando Y 2015 Phys. Rev. B 91 041203 [22] Wang Y Y, Yu Q H and Xia T L 2016 Chin. Phys. B 25 107503 [23] Abrikosov A A 1998 Phys. Rev. B 58 2788 [24] Abrikosov A A 2000 Europhys. Lett. 49 789 [25] Parish M and Littlewood P 2003 Nature 426 162 [26] Ogorelec Z, Hamzić A and Basletić M 1999 Europhys. Lett. 46 56 [27] Xu R, Husmann A, Rosenbaum T, Saboungi M L, Enderby J and Littlewood P 1997 Nature 390 57 [28] Lee M, Rosenbaum T, Saboungi M-L and Schnyders H 2002 Phys. Rev. Lett. 88 066602 [29] Hu J and Rosenbaum T F 2008 Nat. Mater. 7 697 [30] Hu J, Rosenbaum T F and Betts J B 2005 Phys. Rev. Lett. 95 186603 [31] Fernández-Díaz M T, Martínez J L, Alonso J M and Herrero E 1999 Phys. Rev. B 59 1277 [32] Kuwahara H, Tomioka Y, Asamitsu A, Moritomo Y and Tokura Y 1995 Science 270 961 [33] Shen B, Emmanouilidou E, Deng X, McCollam A, Xing J, Kotliar G, Coldea A I and Ni N 2018 Phys. Rev. B 98 235130 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|