Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016108    DOI: 10.1088/1674-1056/acf705
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals

Yong Nie(聂勇)1,2, Zheng Chen(陈正)1, Wensen Wei(韦文森)1, Huijie Li(李慧杰)1, Yong Zhang(张勇)2, Ming Mei(梅明)1,2, Yuanyuan Wang(王园园)1,2, Wenhai Song(宋文海)3, Dongsheng Song(宋东升)4, Zhaosheng Wang(王钊胜)1,†, Xiangde Zhu(朱相德)1,‡, Wei Ning(宁伟)1,§, and Mingliang Tian(田明亮)1,5
1 Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2 Department of Physics, University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
4 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
5 School of Physics, Anhui University, Hefei 230601, China
Abstract  We report a systematic study on layered metal SrCu4-xP2 single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30 T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at Tp ~ 140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e., ΔLc/Lc~ 0.062%. The structural characterization confines that there is no structure transition below and above Tp. All these results suggest that the nonmagnetic transition of SrCu4-xP2 could be associated with structural distortion.
Keywords:  linear magnetoresistance      thermal expansion      specific heat      structural distortion  
Received:  14 July 2023      Revised:  27 August 2023      Accepted manuscript online:  06 September 2023
PACS:  61.66.-f (Structure of specific crystalline solids)  
  65.40.Ba (Heat capacity)  
  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
  72.20.My (Galvanomagnetic and other magnetotransport effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1607403,2021YFA1600201, and 2022YFA1602603), the Natural Science Foundation of China (Grant Nos. U19A2093, U2032214, and U2032163), the Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2019HSC-CIP 001), the Youth Innovation Promotion Association of CAS (Grant No. 2021117), the Natural Science Foundation of Anhui Province (No.1908085QA15), the HFIPS Director’s Fund (Grant No. YZJJQY202304), and the CASHIPS Director’s Fund (Grant No. YZJJ2022QN36). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province.
Corresponding Authors:  Zhaosheng Wang, Xiangde Zhu, Wei Ning     E-mail:  zswang@hmfl.ac.cn;xdzhu@hmfl.ac.cn;ningwei@hmfl.ac.cn

Cite this article: 

Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮) Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals 2024 Chin. Phys. B 33 016108

[1] Stoyko S S, Khatun M, Scott Mullen C and Mar A 2012 J. Solid State Chem. 192 325
[2] Dünner J and Mewis A 1999 Z. Anorg. Allg. Chem. 625 625
[3] Pfisterer M and Nagorsen G 1982 Z. Naturforsch B 37 420
[4] Li L, Yang Z, Su Q, Yang J, Chen B, Du J, Wu C, Wang H and Fang M 2022 J. Alloys Compd. 916 165460
[5] Hadjiev V G, Lv B and Chu C W 2011 Phys. Rev. B 84 073105
[6] Shen B, Hu C W, Cao H B, Gui X, Emmanouilidou E, Xie W W and Ni N 2020 Phys. Rev. Mater. 4 064419
[7] Zhu Q, Li L, Yang Z, Lou Z, Du J, Yang J, Chen B, Wang H and Fang M 2020 Sci. China:Phys. Mech. Astron. 64 227011
[8] Shen B, Emmanouilidou E, Deng X Y, McCollam A, Xing J, Kotliar G, Coldea A I and Ni N 2018 Phys. Rev. B 98 235130
[9] Ryan D H, Budko S L, Hu C and Ni N 2019 AIP Advances 9 125050
[10] Weise W and Schuster H U 1986 Z. Anorg. Allg. Chem. 535 143
[11] Demchyna R O, Chykhrij S I and Kuz'ma Y B 2002 J. Alloys Compd. 345 170
[12] Mewis A 1980 Z. Naturforsch B 35 942
[13] Dünner J and Mewis A 1997 Z. Anorg. Allg. Chem. 623 608
[14] Gerke B, Schwickert C, Stoyko S S, Khatun M, Mar A and Pottgen R 2013 Solid State Sci. 20 65
[15] Sasmal S, Saini V, Ramakrishnan S, Dwari G, Maity B B, Bao J K, Mondal R, Tripathi V, van Smaalen S, Singh B and Thamizhavel A 2022 Phys. Rev. Res. 4 L012011
[16] Bud'ko S L, Xiang L, Hu C W, Shen B, Ni N and Canfield P C 2020 Phys. Rev. B 101 195112
[17] Lin J C, Tong P, Tong W, Lin S, Wang B S, Song W H, Zou Y M and Sun Y P 2015 Appl. Phys. Lett. 106 082405
[18] Kuchler R, Worl A, Gegenwart P, Berben M, Bryant B and Wiedmann S 2017 Rev. Sci. Instrum. 88 083903
[19] Abrikosov A A 2017 Fundamentals of the Theory of Metals (Courier Dover Publications)
[20] Narayanan A, Watson M, Blake S, Bruyant N, Drigo L, Chen Y, Prabhakaran D, Yan B, Felser C and Kong T 2015 Phys. Rev. Lett. 114 117201
[21] Novak M, Sasaki S, Segawa K and Ando Y 2015 Phys. Rev. B 91 041203
[22] Wang Y Y, Yu Q H and Xia T L 2016 Chin. Phys. B 25 107503
[23] Abrikosov A A 1998 Phys. Rev. B 58 2788
[24] Abrikosov A A 2000 Europhys. Lett. 49 789
[25] Parish M and Littlewood P 2003 Nature 426 162
[26] Ogorelec Z, Hamzić A and Basletić M 1999 Europhys. Lett. 46 56
[27] Xu R, Husmann A, Rosenbaum T, Saboungi M L, Enderby J and Littlewood P 1997 Nature 390 57
[28] Lee M, Rosenbaum T, Saboungi M-L and Schnyders H 2002 Phys. Rev. Lett. 88 066602
[29] Hu J and Rosenbaum T F 2008 Nat. Mater. 7 697
[30] Hu J, Rosenbaum T F and Betts J B 2005 Phys. Rev. Lett. 95 186603
[31] Fernández-Díaz M T, Martínez J L, Alonso J M and Herrero E 1999 Phys. Rev. B 59 1277
[32] Kuwahara H, Tomioka Y, Asamitsu A, Moritomo Y and Tokura Y 1995 Science 270 961
[33] Shen B, Emmanouilidou E, Deng X, McCollam A, Xing J, Kotliar G, Coldea A I and Ni N 2018 Phys. Rev. B 98 235130
[1] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[2] Thermal expansion behavior of sintered Nd-Fe-B magnets with different Co contents and orientations
Rui-Yang Meng(孟睿阳), Ji-Yuan Xu(徐吉元), Jia-Teng Zhang(张家滕), Jing Liu(刘静), Yi-Kun Fang(方以坤), Sheng-Zhi Dong(董生智), and Wei Li(李卫). Chin. Phys. B, 2023, 32(5): 056501.
[3] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[4] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[5] Subtle lattice distortion-driven phase transitions in layered ACu4As2 (A = Eu, Sr)
Yong Nie(聂勇), Zheng Chen(陈正), Ming Mei(梅明), Yuan-Yuan Wang(王园园), Jia-Ting Wu(吴嘉挺), Jia-Liang Jiang(蒋佳良), Wen-Hai Song(宋文海), Wei Ning(宁伟), Zhao-Sheng Wang(王钊胜), Xiang-De Zhu(朱相德), and Ming-Liang Tian(田明亮). Chin. Phys. B, 2023, 32(10): 106102.
[6] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[7] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[8] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[9] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[10] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[11] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[12] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[13] Absence of magnetic order in dichloro [1,2-bis (diphenylphosphino) ethane] nickel2 + single crystal
Shuaiqi Ma(马帅奇), Linlin An(安琳琳), and Xiangde Zhu(朱相德). Chin. Phys. B, 2021, 30(5): 057501.
[14] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[15] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
No Suggested Reading articles found!