CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Subtle lattice distortion-driven phase transitions in layered ACu4As2 (A = Eu, Sr) |
Yong Nie(聂勇)1,2, Zheng Chen(陈正)1, Ming Mei(梅明)1,2, Yuan-Yuan Wang(王园园)1,2, Jia-Ting Wu(吴嘉挺)1,2, Jia-Liang Jiang(蒋佳良)1,2, Wen-Hai Song(宋文海)3, Wei Ning(宁伟)1,†, Zhao-Sheng Wang(王钊胜)1, Xiang-De Zhu(朱相德)1,‡, and Ming-Liang Tian(田明亮)1,4,§ |
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science(HFIPS), Chinese Academy of Sciences, Hefei 230031, China; 2 Department of Physics, University of Science and Technology of China, Hefei 230026, China; 3 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 4 School of Physics, Anhui University, Hefei 230601, China |
|
|
Abstract The compounds composed of transition metal cations and pnictide anions provide a rich platform for studying novel physical phenomena. Here we report on the observation of a phase transition at $\sim 70$ K and 145 K in layered compound EuCu$_{4}$As$_{2}$ and SrCu$_{4}$As$_{2}$, respectively. from both the transport and heat capacity. The thermal expansion measurements show that the variation of the lattice parameters ($\Delta L_{b}/L_{ab}$) around $T_{\rm P}$ is much less than that for a typical crystalline phase transition. Our experimental results reveal that the transition in EuCu$_{4}$As$_{2}$ and SrCu$_{4}$As$_{2}$ should be driven by subtle structural-distortion.
|
Received: 05 April 2023
Revised: 05 April 2023
Accepted manuscript online: 09 May 2023
|
PACS:
|
61.66.-f
|
(Structure of specific crystalline solids)
|
|
65.40.Ba
|
(Heat capacity)
|
|
65.60.+a
|
(Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1600201), the National Natural Science Foundation of China (Grant Nos. U19A2093, U2032214, U2032163, U1732274, 11904002, and 11874359), the Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences (CAS) (Grant No. 2019HSC-CIP 001), the Youth Innovation Promotion Association of CAS (Grant No. 2021117), the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA15), the Director Fund from the Hefei Institutes of Physical Science (HFIPS) (Grant No. YZJJQY202304), the Director Fund from the the Chinese Academy of Sciences and Hefei Institutes of Physical Science (CASHIPS), China (Grant No. E26MMG71131), and the High Magnetic Field Laboratory of Anhui Province, China. |
Corresponding Authors:
Wei Ning, Xiang-De Zhu, Ming-Liang Tian
E-mail: ningwei@hmfl.ac.cn;xdzhu@hmfl.ac.cn;mltian@hmfl.ac.cn
|
Cite this article:
Yong Nie(聂勇), Zheng Chen(陈正), Ming Mei(梅明), Yuan-Yuan Wang(王园园), Jia-Ting Wu(吴嘉挺), Jia-Liang Jiang(蒋佳良), Wen-Hai Song(宋文海), Wei Ning(宁伟), Zhao-Sheng Wang(王钊胜), Xiang-De Zhu(朱相德), and Ming-Liang Tian(田明亮) Subtle lattice distortion-driven phase transitions in layered ACu4As2 (A = Eu, Sr) 2023 Chin. Phys. B 32 106102
|
[1] Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003 [2] Sefat A S, McGuire M A, Jin R, Sales B C, Mandrus D, Ronning F, Bauer E D and Mozharivskyj Y 2009 Phys. Rev. B 79 094508 [3] Tan X, Tener Z P and Shatruk M 2018 Accounts of Chemical Research 51 230 [4] Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Pöttgen R 2008 Phys. Rev. B 78 020503 [5] Jiang W B, Guo C Y, Weng Z F, Wang Y F, Chen Y H, Chen Y, Pang G M, Shang T, Lu X and Yuan H Q 2014 J. Phys.: Condens. Matter 27 022202 [6] Kudo K, Nishikubo Y and Nohara M 2010 J. Phys. Soc. Jpn. 79 123710 [7] Lou X, Xu H C, Wen C H P, Yu T L, Wei W Z, Yao Q, Song Y H, Emmanouilidou E, Shen B, Ni N, Dudin P, Huang Y B, Denlinger J, Sutarto R, Li W, Peng R and Feng D L 2020 Phys. Rev. B 101 075123 [8] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97 [9] Yi M, Lu D H, Analytis J G, Chu J H, Mo S K, He R H, Hashimoto M, Moore R G, Mazin I I, Singh D J, Hussain Z, Fisher I R and Shen Z X 2009 Phys. Rev. B 80 174510 [10] Yang L X, Xie B P, Zhang Y, He C, Ge Q Q, Wang X F, Chen X H, Arita M, Jiang J, Shimada K, Taniguchi M, Vobornik I, Rossi G, Hu J P, Lu D H, Shen Z X, Lu Z Y and Feng D L 2010 Phys. Rev. B 82 104519 [11] Zhou B, Xu M, Zhang Y, Xu G, He C, Yang L X, Chen F, Xie B P, Cui X Y, Arita M, Shimada K, Namatame H, Taniguchi M, Dai X and Feng D L 2011 Phys. Rev. B 83 035110 [12] Shen B, Emmanouilidou E, Deng X, McCollam A, Xing J, Kotliar G, Coldea A I and Ni N 2018 Phys. Rev. B 98 235130 [13] Shen B, Hu C, Cao H, Gui X, Emmanouilidou E, Xie W and Ni N 2020 Phys. Rev. Mater. 4 064419 [14] Li L, Yang Z, Su Q, Yang J, Chen B, Du J, Wu C, Wang H and Fang M 2022 J. Alloys Compd. 916 165460 [15] Luo X, Sun Y P, Lu W J, Zhu X B, Yang Z R and Song W H 2010 Appl. Phys. Lett. 96 062506 [16] Kuchler R, Worl A, Gegenwart P, Berben M, Bryant B and Wiedmann S 2017 Rev. Sci. Instrum. 88 083903 [17] Dünner J and Mewis A 1997 Z. Anorg. Allg. Chem. 623 608 [18] Tovar M, Rao D, Barnett J, Oseroff S B, Thompson J D, Cheong S W, Fisk Z, Vier D C and Schultz S 1989 Phys. Rev. B 39 2661 [19] Miyazawa M 2005 J. Phys. Soc. Jpn. 75 014702 [20] Bud'ko S L, Xiang L, Hu C, Shen B, Ni N and Canfield P C 2020 Phys. Rev. B 101 195112 [21] Zhu Q, Li L, Yang Z, Lou Z, Du J, Yang J, Chen B, Wang H and Fang M 2020 Sci. China: Phys., Mech. Astron. 64 227011 [22] Sasmal S, Saini V, Ramakrishnan S, Dwari G, Maity B B, Bao J K, Mondal R, Tripathi V, van Smaalen S, Singh B and Thamizhavel A 2022 Phys. Rev. Res. 4 L012011 [23] Fernández-Díaz M T, Martínez J L, Alonso J M and Herrero E 1999 Phys. Rev. B 59 1277 [24] Kuwahara H, Tomioka Y, Asamitsu A, Moritomo Y and Tokura Y 1995 Science 270 961 [25] Tachibana M, Taira N, Kawaji H and Takayama-Muromachi E 2010 Phys. Rev. B 82 054108 [26] Yamaura J and Hiroi Z 2002 J. Phys. Soc. Jpn. 71 2598 [27] Hiroi Z, Yamaura J I, Muraoka Y and Hanawa M 2002 J. Phys. Soc. Jpn. 71 1634 [28] Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K and Boothroyd A T 2013 Nat. Mater. 12 1024 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|