Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Valley transport in Kekulé structures of graphene |
Juan-Juan Wang(王娟娟)1,† and Jun Wang(汪军)2,‡ |
1 Department of Physics, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2 Department of Physics, Southeast University, Nanjing 210096, China |
|
|
Abstract Valleytronics is an emergent discipline in condensed matter physics and offers a new way to encode and manipulate information based on the valley degree of freedom in materials. Among the various materials being studied, Kekulé distorted graphene has emerged as a promising material for valleytronics applications. Graphene can be artificially distorted to form the Kekulé structures rendering the valley-related interaction. In this work, we review the recent progress of research on Kekulé structures of graphene and focus on the modified electronic bands due to different Kekulé distortions as well as their effects on the transport properties of electrons. We systematically discuss how the valley-related interaction in the Kekulé structures was used to control and affect the valley transport including the valley generation, manipulation, and detection. This article summarizes the current challenges and prospects for further research on Kekulé distorted graphene and its potential applications in valleytronics.
|
Received: 22 June 2023
Revised: 04 September 2023
Accepted manuscript online: 15 September 2023
|
PACS:
|
78.20.Jq
|
(Electro-optical effects)
|
|
71.70.Fk
|
(Strain-induced splitting)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174051 and 12304069). |
Corresponding Authors:
Juan-Juan Wang, Jun Wang
E-mail: juanjuanwang@njau.edu.cn;jwang@seu.edu.cn
|
Cite this article:
Juan-Juan Wang(王娟娟) and Jun Wang(汪军) Valley transport in Kekulé structures of graphene 2024 Chin. Phys. B 33 017801
|
[1] Zhai F, Zhao X F and Chang K 2010 Phys. Rev. B 82 115442 [2] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172 [3] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806 [4] Wu Z H, Zhai F, Peeters F M, Xu H Q and Chang K 2011 Phys. Rev. Lett. 106 176802 [5] Pesin D and MacDonald A H 2012 Nat. Mater. 11 409 [6] Behnia K 2012 Nat. Nanotechnol. 7 488 [7] Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102 [8] Mak K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [9] Wang K T, Wang H, Xu F M, Yu Y J and Wei Y D 2023 New J. Phys. 25 013019 [10] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802 [11] Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotechnol. 7 490 [12] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [13] Guddala S, Kawaguchi Y, Komissarenko F, Kiriushechkina S, Vakulenko A, Chen K, Alu A, Menon M V and Khanikaev A B 2021 Nat. Commun. 12 3746 [14] Liu Y, Lian C S, Li Y, Xu Y and Duan W 2017 Phys. Rev. Lett. 119 255901 [15] Giovannetti G, Capone M, van den Brink J and Ortix C 2015 Phys. Rev. B 91 121417 [16] Ezawa M 2012 Phys. Rev. Lett. 109 055502 [17] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802 [18] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [19] Stegmann T and Szpak N 2016 New J. Phys. 18 053016 [20] Milovanovic S P and Peeters F M 2016 Appl. Phys. Lett. 109 203108 [21] Low T and Guinea F 2010 Nano Lett. 10 3551 [22] Zhao X W, Li Y, Liang R D, Hu G C, Yuan X B and Ren J F 2020 Appl. Surf. Sci. 504 144367 [23] Fujita T, Jalil M B A and Tan S G 2010 Appl. Phys. Lett. 97 043508 [24] Garcia-Pomar J L, Cortijo A and Nieto-Vesperinas M 2008 Phys. Rev. Lett. 100 236801 [25] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C and Xu X D 2017 Sci. Adv.3 e1603113 [26] Yao H B, Liu Y Z, Zhu M F and Zheng Y S 2015 Europhys. Lett. 109 37010 [27] Wu Q P, Chang L L, Li Y Z, Liu Z F and Xiao X B 2020 Nanoscale Res. Lett. 15 46 [28] Ruiz-Tijerina D A, Andrade E, Carrillo-Bastos R, Mireles F and Naumis G G 2019 Phys. Rev. B 100 075431 [29] Gao P, Torrent D, Cervera F, San-Jose P, Sanchez-Dehesa J and Christensen J 2019 Phys. Rev. Lett. 123 196601 [30] Wang J J, Liu S, Wang J and Liu J F 2018 Phys. Rev. B 98 195436 [31] Wang J J, Liu S, Wang J and Liu J F 2020 Phys. Rev. B 101 245428 [32] Wang S K and Wang J 2015 Phys. Rev. B 92 075419 [33] Ren Y F, Deng X Z, Qiao Z H, Li C S, Jung J, Zeng C G, Zhang Z Y and Niu Q 2015 Phys. Rev. B 91 245415 [34] Xu F M, Yu Z Z, Ren Y F, Wang B, Wei Y D and Qiao Z H 2016 New J. Phys. 18 113011 [35] Wu Q P, Liu Z F, Chen A X, Xiao X B, Zhang H and Miao G X 2017 J. Phys. Condens. Matter 29 395303 [36] Gutierrez C, Kim C J, Brown L, Schiros T, Nordlund D, Lochocki E B, Shen K M, Park J and Pasupathy A N 2016 Nat. Phys. 12 950 [37] Lu H Z, Yao W, Xiao D and Shen S Q 2013 Phys. Rev. Lett. 110 016806 [38] An X T, Xiao J, Tu M W Y, Yu H Y, Falko V I and Yao W 2017 Phys. Rev. Lett. 118 096602 [39] An X T and Yao W 2020 Phys. Rev. A 14 014039 [40] Gamayun O V, Ostroukh V P, Gnezdilov N V, Adagideli I and Beenakker C W J 2018 New J. Phys. 20 023016 [41] Hou C Y, Chamon C and Mudry C 2007 Phys. Rev. Lett. 98 186809 [42] Herrera S A and Naumis G G 2020 Phys. Rev. B 102 205429 [43] Andrade E, Carrillo-Bastos R and Naumis G G 2019 Phys. Rev. B 99 035411 [44] Bao C H, Zhang H Y, Zhang T, Wu X, Luo L P, Zhou S H, Li Q, Hou Y H, Yao W, Liu L W, Yu P, Li J, Duan W H, Yao H, Wang Y L and Zhou S Y 2021 Phys. Rev. Lett. 126 206804 [45] Cheianov V V, Falko V I, Syljuasen O and Altshuler B L 2009 Solid State Commun. 149 1499 [46] Chamon C 2000 Phys. Rev. B 62 2806 [47] Zeng W and Shen R 2021 Phys. Rev. B 104 075436 [48] Andrade E, Carrillo-Bastos R, Pantaleon P A and Mireles F 2020 J. Appl. Phys. 127 054304 [49] Herrera S A and Naumis G G 2020 Phys. Rev. B 101 205413 [50] Garcia S G, Stegmann T and Betancur-Ocampo Y 2022 Phys. Rev. B 105 125139 [51] Zeng W and Shen R 2022 Phys. Rev. B 105 094510 [52] Andrade E, Carrillo-Bastos R, Asmar M M and Naumis G G 2022 Phys. Rev. B 106 195413 [53] Beenakker C W J, Gnezdilov N V, Dresselhaus E, Ostroukh V P, Herasymenko Y, Adagideli I and Tworzydlo J 2018 Phys. Rev. B 97 241403 [54] Mojarro M A, Ibarra-Sierra V G, Sandoval-Santana J C, Carrillo-Bastos R and Naumis G G 2020 Phys. Rev. B 102 165301 [55] Wu Q P, Chang L L, Li Y Z, Liu Z F and Xiao X B 2020 Nanoscale Res. Lett. 15 1 [56] Virojanadara C, Watcharinyanon S, Zakharov A A and Johansson L I 2010 Phys. Rev. B 82 205402 [57] Santacruz A, Iglesias P E, Carrillo-Bastos R and Mireles F 2022 Phys. Rev. B 105 205405 [58] Mohammadi Y and Bahrami S 2022 Chin. Phys. B 31 017305 [59] Wei Y J, Liu H L, Wang J and Liu J F 2022 Phys. Rev. B 106 165419 [60] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [61] Sasaki K I and Saito R 2008 Prog. Theor. Phys. Suppl. 176 253 [62] Eom D and Koo J Y 2020 Nanoscale 12 19604 [63] Wang J and Fischer S 2014 Phys. Rev. B 89 245421 [64] Iadecola T, Campbell D, Chamon C, Hou C Y, Jackiw R, Pi S Y and Kusminskiy S V 2013 Phys. Rev. Lett. 110 176603 [65] Iadecola T, Neupert T and Chamon C 2014 Phys. Rev. B 89 115425 [66] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [67] Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113 [68] Venderbos J W F, Manzardo M, Efremov D V, van den Brink J and Ortix C 2016 Phys. Rev. B 93 045428 [69] Betancur-Ocampo Y, Cordourier-Maruri G, Gupta V and de Coss R 2017 Phys. Rev. B 96 024304 [70] Illes E and Nicol E J 2017 Phys. Rev. B 95 235432 [71] Urban Daniel F, Bercioux D, Wimmer M and Hausler W 2011 Phys. Rev. B 84 115136 [72] Shen R, Shao L B, Wang B G and Xing D Y 2010 Phys. Rev. B 81 041410 [73] Li R G, Liu J F and Wang J 2009 Phys. Rev. Lett. 103 046801 [75] Zeng H L, Dai J F, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [76] Shan W Y, Zhou J H and Xiao D 2015 Phys. Rev. B 91 035402 [77] Wehling T O, Huber A, Lichtenstein A I and Katsnelson M I 2015 Phys. Rev. B 91 041404 [78] Assili M, Haddad S and Kang W 2015 Phys. Rev. B 91 115422 [79] Gorbachev R V, Song C W J, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448 [80] Xia C, Watcharinyanon S, Zakharov A A, Yakimova R, Hultman L, Johansson L I and Virojanadara C 2012 Phys. Rev. B 85 045418 [81] Watcharinyanon S, Virojanadara C and Johansson L 2011 Surf. Sci. 605 1918 [82] Watcharinyanon S, Johansson L I, Xia C and Virojanadara C 2012 J. Appl. Phys. 111 083711 [83] Forti S and Starke U 2014 J. Phys. D:Appl. Phys. 47 094013 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|