Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017505    DOI: 10.1088/1674-1056/acf65f
Special Issue: SPECIAL TOPIC — Valleytronics
TOPICAL REVIEW—Valleytronics Prev   Next  

Progress on two-dimensional ferrovalley materials

Ping Li(李平)1,2,†, Bang Liu(刘邦)1, Shuai Chen(陈帅)3, Wei-Xi Zhang(张蔚曦)4, and Zhi-Xin Guo(郭志新)1,‡
1 State Key Laboratory for Mechanical Behavior of Materials, Center for Spintronics and Quantum System, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
2 State Key Laboratory for Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
3 Jinan Aviation Repair Factory, Jinan 250000, China;
4 Department of Physics and Electronic Engineering, Tongren University, Tongren 554300, China
Abstract  The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics. Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics.
Keywords:  ferrovalley      valley polarization      two-dimensional materials      multi-field tunable  
Received:  03 July 2023      Revised:  24 August 2023      Accepted manuscript online:  04 September 2023
PACS:  75.70.Tj (Spin-orbit effects)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074301 and 12004295), China’s Postdoctoral Science Foundation funded project (Grant No. 2022M722547), the Open Project of State Key Laboratory of Surface Physics (Grant No. KF2022 09), and the Natural Science Foundation of Guizhou Provincial Education Department (Grant No. ZK[2021]034).
Corresponding Authors:  Ping Li, Zhi-Xin Guo     E-mail:  pli@xjtu.edu.cn;zxguo08@xjtu.edu.cn

Cite this article: 

Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新) Progress on two-dimensional ferrovalley materials 2024 Chin. Phys. B 33 017505

[1] Sham L J, Allen S J, Kamgar J A and Tsui D C 1978 Phys. Rev. Lett. 40 472
[2] Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N and Eriksson M A 2007 Nat. Phys. 3 41
[3] Isberg J, Gabrysch M, Hammersberg J, Majdi S, Kovi K K and Twitchen D J 2013 Nat. Mater. 12 760
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[5] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[6] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406
[7] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
[8] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[9] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[10] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[11] Cheng Y C, Zhang Q Y and Schwingenschlogl U 2014 Phys. Rev. B 89 155429
[12] Sattar S, Singh N and Schwingenschlogl U 2016 Phys. Rev. B 94 205415
[13] Chen X, Zhong L, Li X and Qi J 2017 Nanoscale 9 2188
[14] Peng R, Ma Y, Zhang S, Huang B and Dai Y 2018 J. Phys. Chem. Lett. 9 3612
[15] Zhou J, Sun Q and Jena P 2017 Phys. Rev. Lett. 119 046403
[16] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C and Xu X 2018 Nano Lett. 18 3823
[17] Zhai B, Du J, Shen C, Wang T, Peng Y, Zhang Q and Xia C 2019 Phys. Rev. B 100 195307
[18] Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A and Zeng H 2019 Nat. Commun. 10 4163
[19] Vila M, Garcia J H and Roche S 2021 Phys. Rev. B 104 L16113
[20] Rostami H and Asgari R 2015 Phys. Rev. B 91 075433
[21] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148
[22] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoglu A 2015 Nat. Phys. 11 141
[23] Arora A, Schmidt R, Schneider R, Molas M R, Breslavetz I, Potemski M and Bratschitsch R 2016 Nano Lett. 16 3624
[24] Smolenski T, Goryca M, Koperski M, Faugeras C, Kazimierczuk T, Bogucki A, Nogajewski K, Kossacki P and Potemski M 2016 Phys. Rev. X 6 021024
[25] Sanchez O L, Ovchinnikov D, Misra S, Allain A and Kis A 2016 Nano Lett. 16 5792
[26] Friedlan A and Dignam M M 2021 Phys. Rev. B 103 075414
[27] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612
[28] Zhao P, Ma Y, Lei C, Wang H, Huang B and Dai Y 2019 Appl. Phys. Lett. 115 261605
[29] Peng R, Ma Y, Xu X, He Z, Huang B and Dai Y 2020 Phys. Rev. B 102 035412
[30] Hu H, Tong W Y, Shen Y H, Wan X and Duan C G 2020 NPJ Comput. Mater. 6 129
[31] Pan W 2022 Phys. Rev. B 106 125122
[32] Cui Q, Zhu Y, Liang J, Cui P and Yang H 2021 Phys. Rev. B 103 085421
[33] Feng X, Xu X, He Z, Peng R, Dai Y, Huang B and Ma Y 2021 Phys. Rev. B 104 075421
[34] Li S, Wang Q, Zhang C, Guo P and Yang S A 2021 Phys. Rev. B 104 085149
[35] Zhou X, Zhang R W, Zhang Z, Feng W and Mokrousov Y A Y Y 2021 NPJ Comput. Mater. 7 160
[36] Wang K, Li Y, Mei H, Li P and Guo Z X 2022 Phys. Rev. Mater. 6 044202
[37] He Z, Peng R, Feng X, Xu X, Dai Y, Huang B and Ma Y 2021 Phys. Rev. B 104 075105
[38] Zhou W, Zheng G, Li A, Zheng D and Ouyang F 2023 Phys. Rev. B 107 035139
[39] Liu L, Zhao B, Zhang J, Bao H, Huan H, Xue Y, Li Y and Yang Z 2021 Phys. Rev. B 104 245414
[40] Cheng H X, Zhou J, Ji W, Zhang Y N and Feng Y P 2021 Phys. Rev. B 103 125121
[41] Xu X, He Z, Dai Y, Huang B and Ma Y 2021 Phys. Rev. B 104 205430
[42] Sheng K, Chen Q, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 075304
[43] Hu K G and Feng J 2016 Physics 45 494
[44] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
[45] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[46] Zhu Z Y, Cheng Y C and Schwingenschlogl U 2011 Phys. Rev. B 84 153402
[47] Cheiwchanchamnnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302
[48] Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X and Zhang X 2016 Nat. Nanotechnol. 11 598
[49] Jia Y, Luo F, Hao X, Meng Q, Dou W, Zhang L, Wu J, Zhai S and Zhou M 2021 ACS Appl. Mater. Interfaces 13 6480
[50] Zhang L, Shi G, Peng B, Gao P, Chen L, Zhong N, Mu L, Zhang L, Zhang P, Gu L, Zhao Y, Liang S, Jiang J, Zhang Z, Ren H, Lei X, Yi R, Qiu Y, Zhang Y, Liu X, Mu W, Yan L, Duan C, Zhang S and Fang H 2021 Natl. Sci. Rev. 8 nwaa274
[51] Li P, Yang X, Jiang Q S, Wu Y Z and Xun W 2023 Phys. Rev. Mater. 7 064002
[52] Huan H, Xue Y, Zhao B, Gao G, Bao H and Yang Z 2021 Phys. Rev. B 104 165427
[53] Shen C, Wang G, Wang T, Xia C and Li J 2020 Appl. Phys. Lett. 117 042406
[54] Zhang C, Nie Y, Sanvito S and Du A 2019 Nano Lett. 19 1366
[55] Luo C, Peng X, Qu J and Zhong J 2020 Phys. Rev. B 101 245416
[56] Li C and An Y 2022 Phys. Rev. Mater. 6 094012
[57] Zhao Y F, Shen Y H, Hu H, Tong W Y and Duan C G 2021 Phys. Rev. B 103 115124
[58] Sheng K, Zhao B, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 195312
[59] Zhao P, Liang Y, Ma Y and Frauenheim T 2023 Phys. Rev. B 107 035416
[60] Sharan A and Singh N 2022 Adv. Theory Simul. 5 2100476
[61] Li C and An Y 2023 Phys. Rev. B 107 115428
[62] Jiang S W, Shan J and Mak K F 2018 Nat. Mater. 18 1303
[63] Huang B, Clark G, Klein D R, MacNeill D, Moratalla E N, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Herrero P J and Xu X 2018 Nat. Nanotechnol. 13 544
[64] Li P, Zhou X S and Guo Z X 2022 NPJ Comput. Mater. 8 20
[65] Li P, Zhang J Z, Guo Z X, Min T and Wang X 2023 Sci. China:Phys. Mech. Astron. 66 227511
[66] Liang L, Yang Y, Wang X and Li X 2023 Nano Lett. 23 858
[67] Hu H, Tong W Y, Shen Y H and Duan C G 2020 J. Mater. Chem. C 8 8098
[68] Du W, Peng R, He Z, Dai Y, Huang B and Ma Y 2022 NPJ 2D Mater. Appl. 6 11
[69] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Yamagishi J D S, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Herrero P J 2018 Nature 556 80
[70] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W and Gao C L 2019 Science 336 983
[71] Li L and Wu M 2017 ACS Nano 11 6382
[72] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336
[73] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Herrero P J 2018 Nature 556 43
[74] Zhang T, Xu X, Huang B, Dai Y, Kou L and Ma Y 2023 Mater. Horizons 10 483
[75] Peng R, Zhang T, He Z, Wu Q, Dai Y, Huang B and Ma Y 2023 Phys. Rev. B 107 085411
[76] Xiao J and Yan B 2020 2D Mater. 7 045010
[77] Ma X, Yin L, Zou J, Mi W and Wang X 2019 J. Phys. Chem. C 123 17440
[78] Guan Y, Miao L, He J, Ning J, Chen Y, Xie W, Sun J, Gopalan V, Zhu J, Wang X, Alem N, Zhang Q and Mao Z 2023 J. Am. Chem. Soc. 145 4683
[79] Chen Y, Qian S, Wang K, Xing X, We A, Loh K P, Wang B, Wu D, Chu J, Alu A, Lu P and Qiu C W 2022 Nat. Nanotechol. 17 1178
[80] Chen J, Zhou Y, Yan J, Liu J, Xu L, Wang J, Wan T, He Y, Zhang W and Chai Y 2022 Nat. Commun. 13 7758
[1] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shijun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[2] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[3] Corrigendum to “Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
Zhi-Yuan Li(李志远) and Jianfeng Chen(陈剑锋). Chin. Phys. B, 2024, 33(2): 029901.
[4] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[5] Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
Fei Wang(王斐), Yaling Zhang(张亚玲), Wenjia Yang(杨文佳), Huisheng Zhang(张会生), and Xiaohong Xu(许小红). Chin. Phys. B, 2024, 33(1): 017306.
[6] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] Magnetic and magnetotransport properties of layered TaCoTe2 single crystals
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2023, 32(12): 127303.
[10] Recent progress on two-dimensional ferroelectrics: Material systems and device applications
Zhiwei Fan(范芷薇), Jingyuan Qu(渠靖媛), Tao Wang(王涛), Yan Wen(温滟), Ziwen An(安子文), Qitao Jiang(姜琦涛), Wuhong Xue(薛武红), Peng Zhou(周鹏), and Xiaohong Xu(许小红). Chin. Phys. B, 2023, 32(12): 128508.
[11] Valley polarization in transition metal dichalcogenide layered semiconductors: Generation, relaxation, manipulation and transport
Hui Ma(马惠), Yaojie Zhu(朱耀杰), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Xilin Zhang(张喜林), Yanbo Ren(任琰博), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2023, 32(10): 107201.
[12] Multifunctional light-field modulation based on hybrid nonlinear metasurfaces
Shuhang Qian(钱树航), Kai Wang(王凯), Jiaxing Yang(杨加兴), Chao Guan(关超), Hua Long(龙华), and Peixiang Lu(陆培祥). Chin. Phys. B, 2023, 32(10): 107803.
[13] Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world
Zhi-Yuan Li(李志远) and Jian-Feng Chen(陈剑锋). Chin. Phys. B, 2023, 32(10): 104211.
[14] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[15] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
No Suggested Reading articles found!