Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Progress on two-dimensional ferrovalley materials |
Ping Li(李平)1,2,†, Bang Liu(刘邦)1, Shuai Chen(陈帅)3, Wei-Xi Zhang(张蔚曦)4, and Zhi-Xin Guo(郭志新)1,‡ |
1 State Key Laboratory for Mechanical Behavior of Materials, Center for Spintronics and Quantum System, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2 State Key Laboratory for Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China; 3 Jinan Aviation Repair Factory, Jinan 250000, China; 4 Department of Physics and Electronic Engineering, Tongren University, Tongren 554300, China |
|
|
Abstract The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics. Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics.
|
Received: 03 July 2023
Revised: 24 August 2023
Accepted manuscript online: 04 September 2023
|
PACS:
|
75.70.Tj
|
(Spin-orbit effects)
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074301 and 12004295), China’s Postdoctoral Science Foundation funded project (Grant No. 2022M722547), the Open Project of State Key Laboratory of Surface Physics (Grant No. KF2022 09), and the Natural Science Foundation of Guizhou Provincial Education Department (Grant No. ZK[2021]034). |
Corresponding Authors:
Ping Li, Zhi-Xin Guo
E-mail: pli@xjtu.edu.cn;zxguo08@xjtu.edu.cn
|
Cite this article:
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新) Progress on two-dimensional ferrovalley materials 2024 Chin. Phys. B 33 017505
|
[1] Sham L J, Allen S J, Kamgar J A and Tsui D C 1978 Phys. Rev. Lett. 40 472 [2] Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N and Eriksson M A 2007 Nat. Phys. 3 41 [3] Isberg J, Gabrysch M, Hammersberg J, Majdi S, Kovi K K and Twitchen D J 2013 Nat. Mater. 12 760 [4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [5] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [6] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406 [7] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887 [8] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [9] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [10] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [11] Cheng Y C, Zhang Q Y and Schwingenschlogl U 2014 Phys. Rev. B 89 155429 [12] Sattar S, Singh N and Schwingenschlogl U 2016 Phys. Rev. B 94 205415 [13] Chen X, Zhong L, Li X and Qi J 2017 Nanoscale 9 2188 [14] Peng R, Ma Y, Zhang S, Huang B and Dai Y 2018 J. Phys. Chem. Lett. 9 3612 [15] Zhou J, Sun Q and Jena P 2017 Phys. Rev. Lett. 119 046403 [16] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C and Xu X 2018 Nano Lett. 18 3823 [17] Zhai B, Du J, Shen C, Wang T, Peng Y, Zhang Q and Xia C 2019 Phys. Rev. B 100 195307 [18] Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A and Zeng H 2019 Nat. Commun. 10 4163 [19] Vila M, Garcia J H and Roche S 2021 Phys. Rev. B 104 L16113 [20] Rostami H and Asgari R 2015 Phys. Rev. B 91 075433 [21] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148 [22] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoglu A 2015 Nat. Phys. 11 141 [23] Arora A, Schmidt R, Schneider R, Molas M R, Breslavetz I, Potemski M and Bratschitsch R 2016 Nano Lett. 16 3624 [24] Smolenski T, Goryca M, Koperski M, Faugeras C, Kazimierczuk T, Bogucki A, Nogajewski K, Kossacki P and Potemski M 2016 Phys. Rev. X 6 021024 [25] Sanchez O L, Ovchinnikov D, Misra S, Allain A and Kis A 2016 Nano Lett. 16 5792 [26] Friedlan A and Dignam M M 2021 Phys. Rev. B 103 075414 [27] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612 [28] Zhao P, Ma Y, Lei C, Wang H, Huang B and Dai Y 2019 Appl. Phys. Lett. 115 261605 [29] Peng R, Ma Y, Xu X, He Z, Huang B and Dai Y 2020 Phys. Rev. B 102 035412 [30] Hu H, Tong W Y, Shen Y H, Wan X and Duan C G 2020 NPJ Comput. Mater. 6 129 [31] Pan W 2022 Phys. Rev. B 106 125122 [32] Cui Q, Zhu Y, Liang J, Cui P and Yang H 2021 Phys. Rev. B 103 085421 [33] Feng X, Xu X, He Z, Peng R, Dai Y, Huang B and Ma Y 2021 Phys. Rev. B 104 075421 [34] Li S, Wang Q, Zhang C, Guo P and Yang S A 2021 Phys. Rev. B 104 085149 [35] Zhou X, Zhang R W, Zhang Z, Feng W and Mokrousov Y A Y Y 2021 NPJ Comput. Mater. 7 160 [36] Wang K, Li Y, Mei H, Li P and Guo Z X 2022 Phys. Rev. Mater. 6 044202 [37] He Z, Peng R, Feng X, Xu X, Dai Y, Huang B and Ma Y 2021 Phys. Rev. B 104 075105 [38] Zhou W, Zheng G, Li A, Zheng D and Ouyang F 2023 Phys. Rev. B 107 035139 [39] Liu L, Zhao B, Zhang J, Bao H, Huan H, Xue Y, Li Y and Yang Z 2021 Phys. Rev. B 104 245414 [40] Cheng H X, Zhou J, Ji W, Zhang Y N and Feng Y P 2021 Phys. Rev. B 103 125121 [41] Xu X, He Z, Dai Y, Huang B and Ma Y 2021 Phys. Rev. B 104 205430 [42] Sheng K, Chen Q, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 075304 [43] Hu K G and Feng J 2016 Physics 45 494 [44] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204 [45] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [46] Zhu Z Y, Cheng Y C and Schwingenschlogl U 2011 Phys. Rev. B 84 153402 [47] Cheiwchanchamnnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302 [48] Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X and Zhang X 2016 Nat. Nanotechnol. 11 598 [49] Jia Y, Luo F, Hao X, Meng Q, Dou W, Zhang L, Wu J, Zhai S and Zhou M 2021 ACS Appl. Mater. Interfaces 13 6480 [50] Zhang L, Shi G, Peng B, Gao P, Chen L, Zhong N, Mu L, Zhang L, Zhang P, Gu L, Zhao Y, Liang S, Jiang J, Zhang Z, Ren H, Lei X, Yi R, Qiu Y, Zhang Y, Liu X, Mu W, Yan L, Duan C, Zhang S and Fang H 2021 Natl. Sci. Rev. 8 nwaa274 [51] Li P, Yang X, Jiang Q S, Wu Y Z and Xun W 2023 Phys. Rev. Mater. 7 064002 [52] Huan H, Xue Y, Zhao B, Gao G, Bao H and Yang Z 2021 Phys. Rev. B 104 165427 [53] Shen C, Wang G, Wang T, Xia C and Li J 2020 Appl. Phys. Lett. 117 042406 [54] Zhang C, Nie Y, Sanvito S and Du A 2019 Nano Lett. 19 1366 [55] Luo C, Peng X, Qu J and Zhong J 2020 Phys. Rev. B 101 245416 [56] Li C and An Y 2022 Phys. Rev. Mater. 6 094012 [57] Zhao Y F, Shen Y H, Hu H, Tong W Y and Duan C G 2021 Phys. Rev. B 103 115124 [58] Sheng K, Zhao B, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 195312 [59] Zhao P, Liang Y, Ma Y and Frauenheim T 2023 Phys. Rev. B 107 035416 [60] Sharan A and Singh N 2022 Adv. Theory Simul. 5 2100476 [61] Li C and An Y 2023 Phys. Rev. B 107 115428 [62] Jiang S W, Shan J and Mak K F 2018 Nat. Mater. 18 1303 [63] Huang B, Clark G, Klein D R, MacNeill D, Moratalla E N, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Herrero P J and Xu X 2018 Nat. Nanotechnol. 13 544 [64] Li P, Zhou X S and Guo Z X 2022 NPJ Comput. Mater. 8 20 [65] Li P, Zhang J Z, Guo Z X, Min T and Wang X 2023 Sci. China:Phys. Mech. Astron. 66 227511 [66] Liang L, Yang Y, Wang X and Li X 2023 Nano Lett. 23 858 [67] Hu H, Tong W Y, Shen Y H and Duan C G 2020 J. Mater. Chem. C 8 8098 [68] Du W, Peng R, He Z, Dai Y, Huang B and Ma Y 2022 NPJ 2D Mater. Appl. 6 11 [69] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Yamagishi J D S, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Herrero P J 2018 Nature 556 80 [70] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W and Gao C L 2019 Science 336 983 [71] Li L and Wu M 2017 ACS Nano 11 6382 [72] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336 [73] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Herrero P J 2018 Nature 556 43 [74] Zhang T, Xu X, Huang B, Dai Y, Kou L and Ma Y 2023 Mater. Horizons 10 483 [75] Peng R, Zhang T, He Z, Wu Q, Dai Y, Huang B and Ma Y 2023 Phys. Rev. B 107 085411 [76] Xiao J and Yan B 2020 2D Mater. 7 045010 [77] Ma X, Yin L, Zou J, Mi W and Wang X 2019 J. Phys. Chem. C 123 17440 [78] Guan Y, Miao L, He J, Ning J, Chen Y, Xie W, Sun J, Gopalan V, Zhu J, Wang X, Alem N, Zhang Q and Mao Z 2023 J. Am. Chem. Soc. 145 4683 [79] Chen Y, Qian S, Wang K, Xing X, We A, Loh K P, Wang B, Wu D, Chu J, Alu A, Lu P and Qiu C W 2022 Nat. Nanotechol. 17 1178 [80] Chen J, Zhou Y, Yan J, Liu J, Xu L, Wang J, Wan T, He Y, Zhang W and Chai Y 2022 Nat. Commun. 13 7758 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|