CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Controllable high Curie temperature through 5d transition metal atom doping in CrI3 |
Xuebing Peng(彭雪兵)1, Mingsu Si(司明苏)2, and Daqiang Gao(高大强)1,† |
1 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; 2 School of Materials and Energy, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract Two-dimensional (2D) CrI3 is a ferromagnetic semiconductor with potential for applications in spintronics. However, its low Curie temperature (Tc) hinders realistic applications of CrI3. Based on first-principles calculations, 5d transition metal (TM) atom doping of CrI3 (TM@CrI3) is a universally effective way to increase Tc, which stems from the increased magnetic moment induced by doping with TM atoms. Tc of W@CrI3 reaches 254 K, nearly six times higher than that of the host CrI3. When the doping concentration of W atoms is increased to above 5.9%, W@CrI3 shows room-temperature ferromagnetism. Intriguingly, the large magnetic anisotropy energy of W@CrI3 can stabilize the long-range ferromagnetic order. Moreover, TM@CrI3 has a strong ferromagnetic stability. All TM@CrI3 change from a semiconductor to a half-metal, except doping with Au atom. These results provide information relevant to potential applications of CrI3 monolayers in spintronics.
|
Received: 04 July 2023
Revised: 26 September 2023
Accepted manuscript online: 20 October 2023
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Corresponding Authors:
Daqiang Gao
E-mail: gaodq@lzu.edu.cn
|
Cite this article:
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强) Controllable high Curie temperature through 5d transition metal atom doping in CrI3 2024 Chin. Phys. B 33 017503
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y S, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [3] Lee H, Son Y W, Park N, Han S W and Yu J J 2005 Phys. Rev. B 72 174431 [4] Schmidt M J and Loss D 2010 Phys. Rev. B 82 085422 [5] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 [6] Kan E J, Li Z Y, Yang J L and Hou J G 2008 J. Am. Chem. Soc. 130 4224 [7] Huang B, Clark G, Efrén N M, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, Mcguire M A and Cobden D H 2017 Nature 546 270 [8] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z and Wang Y 2017 Nature 546 265 [9] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W and Zhu J Y 2018 Nature 563 94 [10] Dillon J F and Olson C E 1965 J. Appl. Phys. 36 1259 [11] Seyler K L, Zhong D, Huang B V, Linpeng X Y, Wilson N P, Taniguchi T K, Watanabe K J, Yao W, Xiao D and Mcguire M A 2018 Nano Lett. 18 3823 [12] Ge M, Su Y, Wang H, Yang G H and Zhang J F 2019 RSC Adv. 9 14766 [13] Jiang P H, Li L, Liao Z L, Zhao Y X and Zhong Z C 2018 Nano Lett. 18 3844 [14] Sun Z Y, Yi Y, Song T, Clark G, Huang B V, Shan Y W, Wu S, Huang D, Gao C L, Chen Z H, Mcguire M, Cao T, Xiao D, Liu W T, Yao W, Xu X D and Wu S W 2019 Nature 572 497 [15] Behera A K, Chowdhury S and Das S R 2019 Appl. Phys. Lett. 114 232402 [16] Lee I, Utermohlen F G, Weber D, Hwang K, Zhang C, Van Tol J, Goldberger J E, Trivedi N and Hammel P C 2020 Phys. Rev. Lett. 124 017201 [17] Sivadas N, Okamoto S, Xu X D, Fennie C J and Xiao D 2018 Nano Lett. 18 7658 [18] Huang B, Clark G, Efrén N O, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, Mcguire M A and Cobden D H 2017 Nature 546 270 [19] Zhu S Z and Li T 2016 Phys. Rev. B 93 115401 [20] Webster L and Yan J A 2018 Phys. Rev. B 98 144411 [21] Wang R, Su Y, Yang G H, Zhang J F and Zhang S B 2020 Chem. Mater. 32 1545 [22] Zhang J H, Guo Y, Li P G, Wang J, Zhou S, Zhao J J, Guo D and Zhong D H 2021 J. Phys. Chem. Lett. 12 2199 [23] Pizzochero M 2020 J. Phys. D Appl. Phys. 53 244003 [24] Jiang S W, Li L Z, Wang Z F, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549 [25] Meng Q Y, Lu Q, Cui W B, Xu T T and Zhang L L 2022 J. Phys. D Appl. Phys. 55 265303 [26] Wang H B, Fan F R, Zhu S S and Wu H 2016 Europhys. Lett. 114 47001 [27] Gao Y, Wang J, Li Z P, Yang J J, Xia M R, Hao X F, Xu Y H and Gao F M 2019 Phys. Status Solidi. Rapid Res. Lett. 13 1800410 [28] Guo Y, Yuan S J, Wang B, Shi L and Wang J L 2018 J. Mater. Chem. C 6 5716 [29] Yang Q, Hu X H, Shen X D, Krasheninnikov A V, Chen Z and Sun L 2021 ACS Appl. Mater. Inter. 13 21593 [30] Chen X, Shao Y T, Chen R, Susarla S, Hogan T, He Y, Zhang H, Wang S, Yao J, Ercius P, Muller D A, Ramesh R and Birgeneau R J 2022 Phys. Rev. Lett. 128 217203 [31] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15 [32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [33] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [35] Liu L, Ren X, Xie J, Cheng B, Liu W K, An T Y, Qin H W and Hu J F 2019 Appl. Surf. Sci 480 300 [36] Li T X, Jiang S W, Sivadas N K, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F and Shan J 2019 Nat. Mater. 18 1303 [37] Togo A and Tanaka I 2015 Scripta Mater. 108 1 [38] Stefano B R, Stefano D G, Andrea D C and Paolo G N 2001 Rev. Mod. Phys. 73 515 [39] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408 [40] Li X X and Yang J L 2017 WIREs Comput. Mol. Sci. 7 e1314 [41] Liu Z H, Zhang S K, Wang X, Ye X B, Qin S J, Shen X O, Lu D B, Dai J H, Cao Y Y, Chen K, Radu F, Wu W B, Chen C T, Francoual S, Mardegan J R L, Leupold O, Tjeng L H, Hu Z W, Yang Y F and Long Y W 2022 Adv. Mater. 34 2200626 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|