INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Diamond growth in a high temperature and high pressure Fe-Ni-C-Si system: Effect of synthesis pressure |
Yang Liu(刘杨)1, Zhiwen Wang(王志文)1, Bowei Li(李博维)1, Hongyu Zhao(赵洪宇)1, Shengxue Wang(王胜学)1, Liangchao Chen(陈良超)2,§, Hongan Ma(马红安)1,†, and Xiaopeng Jia(贾晓鹏)1,‡ |
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China |
|
|
Abstract Pressure is one of the necessary conditions for diamond growth. Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds. This work reports the morphology, impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures. Fourier transform infrared spectroscopy shows that with the increase of pressure, the nitrogen content in the C- center inside the diamond crystal decreases. X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder. Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm-1 to 1331.25 cm-1, resulting in a decrease in internal stress in the crystal. The half-peak width decreased from 5.41 cm-1 to 5.26 cm-1, and the crystallinity of the silicon-doped diamond crystals improved, resulting in improved quality. This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds.
|
Received: 18 June 2023
Revised: 07 August 2023
Accepted manuscript online: 15 August 2023
|
PACS:
|
81.05.ug
|
(Diamond)
|
|
61.50.-f
|
(Structure of bulk crystals)
|
|
81.40.Vw
|
(Pressure treatment)
|
|
91.62.La
|
(Carbon cycling, nitrogen cycling)
|
|
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.51872112 and 51772120). |
Corresponding Authors:
Liangchao Chen, Hongan Ma, Xiaopeng Jia
E-mail: chenlc@zzu.edu.cn;maha@jlu.edu.cn;jiaxp@jlu.edu.cn
|
Cite this article:
Yang Liu(刘杨), Zhiwen Wang(王志文), Bowei Li(李博维), Hongyu Zhao(赵洪宇), Shengxue Wang(王胜学), Liangchao Chen(陈良超), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏) Diamond growth in a high temperature and high pressure Fe-Ni-C-Si system: Effect of synthesis pressure 2023 Chin. Phys. B 32 128102
|
[1] Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B and Vincze L 2014 Nature 507 221 [2] Bureau H, Frost D J, Bolfan-Casanova N, Leroy C, Esteve I and Cordier P 2016 Lithos 265 4 [3] Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson D G, Pamato M G, Alvaro M, Peruzzo L, Gurney J J, Moore A E and Davidson J 2018 Nature 555 237 [4] Mashino I, Miozzi F, Hirose K, Morard G and Sinmyo R 2019 Earth and Planetary Science Letters 515 135 [5] Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, Wu Y M, Ma H A and Jia X P 2019 Chin. Phys. B 28 028103 [6] Fang S, Ma H, Cai Z H, Wang C X, Fang C, Zhao Z D, Lu Z Y, Wang Y K, Chen L and Jia X 2020 CrystEngComm 22 602 [7] Fang S, Ma H, Cai Z h, Wang C X, Fang C, Lu Z, Wang Y K, Chen L and Jia X 2020 CrystEngComm 22 3854 [8] Kanda H, Akaishi M and Yamaoka S 1999 Diam. Relat. Mater. 8 1441 [9] Fang C, Shen W, Zhang Y, Mu P, Zhang Z and Jia X 2019 Crystal Growth & Design 19 3955 [10] Palyanov Y, Kupriyanov I, Borzdov Y, Nechaev D and Bataleva Y 2017 Crystals 7 119 [11] Lu Z, Zhao H, Wang Y, Fang S, Cai Z, Wang Z, Ma H A, Chen L, Jia H and Jia X 2021 Lithos 404--405 106470 [12] Cai Z, Li M, Chen L, Fang S, Wang Z, Zhao H, Ma H and Jia X 2022 CrystEngComm 24 1773 [13] Fang S, Wang Y, Chen L, Lu Z, Cai Z, Fang C, Zhao Z, Ma H and Jia X 2021 CrystEngComm 23 1406 [101] Lv R, Yang X, Yang D, Niu C, Zhao C, Qin J, Zang J, Dong F, Dong L and Shan C 2021 Chin. Phys. Lett. 38 076101 [14] Qin Y K, Xiao H Y, Liu L N, Sun R R, Hu Q B, Bao Z G, Zhang Y S, Li S S and Jia X P 2019 Acta Phys. Sin. 68 020701 (in Chinese) [15] Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A and Xiao H Y 2018 Acta Phys. Sin. 67 168101 (in Chinese) [16] Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S and Jia X P 2018 Acta Phys. Sin. 67 140702 (in Chinese) [17] Guo M M, Li S S, Hu M H, Su T C, Wang J Z, Gao G J, You Y and Nie Y 2020 Chin. Phys. B 29 018101 [102] Luo K, Li B, Sun L, Wu Y, Ge Y, Liu B, He J, Xu B, Zhao Z and Tian Y 2022 Chin. Phys. Lett. 39 036301 [18] Li Y, Wang Y, Li S S, Li Z B, Luo K W, Ran M W and Song M S 2019 Acta Phys. Sin. 68 098101 (in Chinese) [103] Wan L, Mu C, Liu X, Cheng S, Wang Q, Li L, Li H and Zhou G 2022 Chin. Phys. Lett. 39 036801 [19] Cai Z, Li B, Chen L, Wang Z, Fang S, Wang Y, Ma H and Jia X 2022 Chin. Phys. B 31 108104 [20] Sheng L X, Chen C K, Jiang M Y, Li X and Hu X J 2020 Chin. Phys. B 29 088101 [21] Ekimov E A and Kondrin M V 2017 Physics-Uspekhi 60 539 [22] Hu X J and Li N 2013 Chin. Phys. Lett. 30 088102 [23] Guo L, Ma H, Chen L, Chen N, Miao X, Wang Y, Fang S, Yang Z, Fang C and Jia X 2018 CrystEngComm 20 5457 [24] Chen N, Ma H, Chen L, Yan B, Fang C, Liu X, Li Y, Guo L, Chen L and Jia X 2018 International Journal of Refractory Metals and Hard Materials 71 141 [25] Liang Z Z, Kanda H, Jia X, Ma H A, Zhu P W, Guan Q F and Zang C Y 2006 Carbon 44 913 [26] Fallon P J, Brown L M, Barry J C and Bruley J 1995 Philos. Mag. A 72 21 [27] Pal'Yanov N, Sokol A G, Borzdov M and Khokhryakov A F 2002 Lithos 60 145 [28] Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J and Jia X 2008 Diam. Relat. Mater. 17 180 [29] Ashfold M N R, Goss J P, Green B L, May P W, Newton M E and Peaker C V 2020 Chem. Rev. 120 5745 [30] Yan B, Jia X, Fang C, Chen N, Li Y, Sun S and Ma H A 2016 International Journal of Refractory Metals and Hard Materials 54 309 [31] Fang S, Ma H, Wang Z, Yang Z, Cai Z H, Ding L, Miao X, Chen L and Jia X 2019 CrystEngComm 21 6010 [32] Ahmed M H, Byrne J A, Mclaughlin J and Ahmed W 2013 J. Biomater. Nanobiotechnol. 04 194 [33] Mangeney C, Qin Z, Dahoumane S A, Adenier A, Herbst F, Boudou J P, Pinson J and Chehimi M M 2008 Diam. Relat. Mater. 17 1881 [34] Ténégal F, Rocque A G d l, Dufour G, Sénémaud C, Doucey B, Bahloul-Hourlier D, Goursat P, Mayne M and Cauchetier M 2000 J. Electron Spectrosc. Relat. Phenomena 109 241 [35] Wang Z Y, Dong L H, Wang D S and Dong Y H 2012 Precis. Eng. 36 162 [36] Miao X, Chen L, Ma H, Fang C, Guo L, Wang Z, Yang Z, Zhao Z and Jia X 2019 CrystEngComm 21 3961 [37] Wang J, Li S, Hu M, Su T and Nie Y 2020 International Journal of Refractory Metals and Hard Materials 87 105150 [38] Catledge S A, Vohra Y K, Ladi R and Rai G 1996 Diam. Relat. Mater. 5 1159 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|