Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077505    DOI: 10.1088/1674-1056/27/7/077505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Domain wall dynamics in magnetic nanotubes driven by an external magnetic field

Zai-Dong Li(李再东)1,2, Yue-Chuan Hu(胡月川)1, Peng-Bin He(贺鹏斌)3, Lin-Lin Sun(孙琳琳)4
1 Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China;
2 Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China;
3 School of Physics and Electronics, Hunan University, Changsha 410082, China;
4 School of Public Management, Beihang University, Beijing 100191, China
Abstract  We use the Landau-Lifshitz-Gilbert equation to investigate field-driven domain wall propagation in magnetic nanotubes. We find that the distortion is maximum as the time becomes infinite and the exact rigid-body solutions are obtained analytically. We also find that the velocity increases with increasing the ratio of inner radius and outer radius. That is to say, we can accelerate domain wall motion not only by increasing the magnetic field, but also by reducing the thickness of the nanotubes.
Keywords:  domain wall      magnetic nanotubes      magnetic field  
Received:  01 March 2018      Revised:  11 April 2018      Accepted manuscript online: 
PACS:  75.78.-n (Magnetization dynamics)  
  75.40.Gb (Dynamic properties?)  
  72.25.Ba (Spin polarized transport in metals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61774001), the National Social Science Foundation of China (Grant No. 17BJY103), the Key Project of Scientific and Technological Research in Hebei Province, China (Grant No. ZD2015133), and the Construction Project of Graduate Demonstration Course in Hebei Province, China (Grant No. 94/220079). Peng-Bin He was supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2017JJ2045).
Corresponding Authors:  Zai-Dong Li, Lin-Lin Sun     E-mail:  lizd@hebut.edu.cn;vickysunlin@126.com

Cite this article: 

Zai-Dong Li(李再东), Yue-Chuan Hu(胡月川), Peng-Bin He(贺鹏斌), Lin-Lin Sun(孙琳琳) Domain wall dynamics in magnetic nanotubes driven by an external magnetic field 2018 Chin. Phys. B 27 077505

[1] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 209
[2] Allwood D A, Xiong G, Cooke M D, Faulkner C C, Atkinson D, Vernier N and Cowburn R P 2002 Science 296 2003
[3] Hayashi M, Thomas L, Moriya R, Rettner C and Parkin S S P 2008 Science 320 209
[4] Xiong G, Allwood D A, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688
[5] Parkin S S P 2009 Scientific American 300 76
[6] Khizroev S, Kryder M H, Litvinov D and Thompson D A 2002 Appl. Phys. Lett. 81 2256
[7] Hulteen J C and Martin C R 1997 J. Mater. Chem. 7 1075
[8] Li F S, Zhou D, Wang T, Wang Y, Song L J and Xu C T 2007 J. Appl. Phys. 101 6030
[9] Nielsch K, Castano F, Matthias S, Lee W and Ross C 2010 Adv. Eng. Mater. 7 217
[10] Sang J S, Xia B, Nan A, Ghandehair H and Sang B L 2006 J. Controlled Release 114 143
[11] Zhu Y, Yang Q, Zheng H G, Gao L, Yang Z and Qian Y 2006 Mater. Chem. Phys. 96 506
[12] Berger L 1986 Phys. Rev. B 33 1572
[13] Lee J Y, Lee K S, Choi S, Guslienko K Y and Kim S K 2007 Phys. Rev. B 76 184408
[14] Slonczewski J S 1996 J. Magn. Magn. Mater. 159 L1
[15] Guslienko K Y, Lee J Y and Kim S K 2008 IEEE Trans. Magn. 44 3079
[16] Sun Z Z and Schliemann J 2010 Phys. Rev. Lett. 104 037206
[17] Yan P and Wang X R 2009 Phys. Rev. B 80 214426
[18] Tretiakov O A, Clarke D, Chern G W, Bazaliy Y B and Tchernyshyov O 2008 Phys. Rev. Lett. 100 127204
[19] BeachGS, Nistor C, Knutson C, Tsoi M and Erskine J L 2005 Nat. Mater. 4 741
[20] Yang J, Nistor C, Beach G S D and Erskine J L 2008 Phys. Rev. B 77 014413
[21] Wang X R, Yan P, Lu J and He C 2009 Ann. Phys. 324 1815
[22] Atkinson D, Allwood D A, Xiong G, Cooke M D, Faulkner C C and Cowburn R P 2003 Nat. Mater. 2 85
[23] Wang X R, Yan P and Lu J 2009 Euro. Phys. Lett. 86 67001
[24] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262
[25] Chumak A V, Serga A A, Jungfleisch M B, Neb R, Bozhko D A, Tiberkevich V S and Hillebrands B 2012 Appl. Phys. Lett. 100 224403
[26] Tatara G and Kohno H 2006 Phys. Rev. Lett. 96 086601
[27] Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204
[28] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406
[29] Otaora J A, Lopez-Lopez J A, Núñez A S and Landeros P 2012 J. Phys.:Condens. Matter 24 436007
[30] Otaora J A, Lopez-Lopez J A, Vargas P and Landeros P 2012 Appl. Phys. Lett. 24 436007
[31] Yan M, Andreas C, Kakay A, Garcia-Sanchez F and Hertel R 2011 Appl. Phys. Lett. 99 190
[32] Kakay A, Yan M, Andreas C and Hertel R 2013 Phys. Rev. B 88 220412
[33] Gilbert T L 2004 IEEE Tran. Magn. 40 3443
[34] Skomski R and Coey J M D 1999 High Magnetic Fields (New York)
[35] Landeros P and Á S 2010 J. Appl. Phys. 108 033917
[36] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406
[37] Slonczewski J C and Malozemoff A P 1979 Academic (New York) 309
[38] Thiaville A and Nakatani Y 2006 (Berlin:Springer) Vol. Ⅲ 161
[39] Beach G S, Nistor C, Knutson C, Tsoi M and Erskine J L 2005 Nat. Mater. 4 741
[40] Lu J, Wang X R, Yan P and He C 2009 Ann. Phys. 324 1815
[41] Wang X, Yan P and Lu J 2009 Europhys. Lett. 86 67001
[42] Sun Z Z and Schliemann J 2010 Phys. Rev. Lett. 104 037206
[43] Tsoi M, Fontana R E and Parkin S S P 2003 Appl. Phys. Lett. 83 2617
[44] Tatara G and Kohno H 2006 Phys. Rev. Lett. 96 086601
[45] Zhang S and Li Z 2004 Phys. Rev. Lett. 92 207203
[46] Thiaville A, Nakatani Y, Miltat J and Suzuki Y 2005 Europhys. Lett. 69 990
[47] Saitoh E, Miyajima H, Yamaoka T and Tatara G 2004 Nature 432 203
[48] Tatara G, Saitoh E, Ichimura M and Kohno H 2005 Appl. Phys. Lett. 86 4825
[49] Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204
[50] He P B, Xie X C and Liu W M 2005 Phys. Rev. B 72 172411
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[4] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[5] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[10] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[11] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[12] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[13] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[14] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[15] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
No Suggested Reading articles found!