Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127102    DOI: 10.1088/1674-1056/acd8a1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved RF power performance of InAlN/GaN HEMT by optimizing rapid thermal annealing process for high-performance low-voltage terminal applications

Yuwei Zhou(周雨威)1, Minhan Mi(宓珉瀚)2,†, Pengfei Wang(王鹏飞)2, Can Gong(龚灿)2, Yilin Chen(陈怡霖)1, Zhihong Chen(陈治宏)2, Jielong Liu(刘捷龙)1, Mei Yang(杨眉)1, Meng Zhang(张濛)2, Qing Zhu(朱青)2, Xiaohua Ma(马晓华)2, and Yue Hao(郝跃)2
1 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
2 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Improved radio-frequency (RF) power performance of InAlN/GaN high electron mobility transistor (HEMT) is achieved by optimizing the rapid thermal annealing (RTA) process for high-performance low-voltage terminal applications. By optimizing the RTA temperature and time, the optimal annealing condition is found to enable low parasitic resistance and thus a high-performance device. Besides, compared with the non-optimized RTA HEMT, the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion from the barrier to the channel and buffer. Benefiting from the lowered parasitic resistance, improved maximum output current density of 2279 mA·mm-1 and higher peak extrinsic transconductance of 526 mS·mm-1 are obtained for the optimized RTA HEMT. In addition, due to the superior heterojunction quality, the optimized HEMT shows reduced off-state leakage current of 7×10-3 mA·mm-1 and suppressed current collapse of only 4%, compared with those of 1×10-1 mA·mm-1 and 15% for the non-optimized one. At 8 GHz and VDS of 6 V, a significantly improved power-added efficiency of 62% and output power density of 0.71 W·mm-1 are achieved for the optimized HEMT, as the result of the improvement in output current, knee voltage, off-state leakage current, and current collapse, which reveals the tremendous advantage of the optimized RTA HEMT in high-performance low-voltage terminal applications.
Keywords:  InAlN/GaN      rapid thermal annealing      low voltage      RF power performance      terminal applications  
Received:  02 September 2022      Revised:  19 May 2023      Accepted manuscript online:  25 May 2023
PACS:  71.55.Eq (III-V semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Key Research and Development Project of China (Grant No.2021YFB3602404), in part by the National Natural Science Foundation of China (Grant Nos.61904135 and 62234009), the Key R&D Program of Guangzhou (Grant No.202103020002), Wuhu and Xidian University special fund for industry-university-research cooperation (Grant No.XWYCXY-012021014-HT), the Fundamental Research Funds for the Central Universities (Grant No.XJS221110), the Natural Science Foundation of Shaanxi, China (Grant No.2022JM-377), and the Innovation Fund of Xidian University (Grant No.YJSJ23019).
Corresponding Authors:  Minhan Mi     E-mail:  miminhan@qq.com

Cite this article: 

Yuwei Zhou(周雨威), Minhan Mi(宓珉瀚), Pengfei Wang(王鹏飞), Can Gong(龚灿), Yilin Chen(陈怡霖), Zhihong Chen(陈治宏), Jielong Liu(刘捷龙), Mei Yang(杨眉), Meng Zhang(张濛), Qing Zhu(朱青), Xiaohua Ma(马晓华), and Yue Hao(郝跃) Improved RF power performance of InAlN/GaN HEMT by optimizing rapid thermal annealing process for high-performance low-voltage terminal applications 2023 Chin. Phys. B 32 127102

[1] Zheng Z, Song W, Lei J, Qian Q, Wei J, Hua M, Yang S, Zhang L and Chen K J 2020 IEEE Electron Device Lett. 41 1304
[2] Then H, Chow L, Dasgupta S, Gardner S, Radosavljevic M, Rao V, Sung S, Yang G and Fischer P 2015 IEEE Int. Electron Devices Meeting (IEDM), 2015, p. 16.3.1
[3] Then H, Chow L, Dasgupta S, Gardner S, Radosavljevic M, Rao V, Sung S, Yang G and Chau R 2015 Symp. on VLSI Technology (VLSI Technology), 2015, p. T202
[4] Then H, Dasgupta S, Radosavljevic M, Gardner S, Sung S and Fischer P 2019 Device Research Conf. (DRC), 2019, p. 39
[5] Zhou Y, Zhu J, Mi M, Zhang M, Wang P, Han Y, Wu S, Liu J, Zhu Q, Chen Y, Hou B, Ma X and Hao Y 2021 IEEE J. Electron Devices Soc. 9 756
[6] Wu Y, Moore M, Saxler A, Wisleder T and Parikh P 2006 64th Device Research Conf. (DRC), 2006, p. 151
[7] Osawa K, Yoshikoshi H, Nitta A, Tanaka T, Mitani E and Satoh T 2016 46th European Microwave Conf. (EuMC), 2016, p. 397
[8] Nakajima S 2018 IEEE Int. Electron Devices Meeting (IEDM), 2018, p. 14.2.1
[9] Hao W, He Q, Zhou K, Xu G, Xiong W, Zhou X, Jian G, Chen C, Zhao X and Long S 2021 Appl. Phys. Lett. 118 043501
[10] Hao W, He Q, Zhou X, Zhao X, Xu G and Long S 2022 34th Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), 2022, pp. 105--108
[11] He Q, Zhou X, Li Q, Hao W, Liu Q, Han Z, Zhou K, Chen C, Peng J, Xu G, Zhao X, Wu X and Long S 2022 IEEE Electron Device Lett. 43 1933
[12] Zhang L, Shi J, Huang H, Liu X, Zhao S, Wang P and Zhang D 2015 IEEE Electron Device Lett. 36 896
[13] Zhang L, Liu Z, Zhao S, Lin M and Wang P 2017 IEEE Trans. on Electron Devices 64 1385
[14] Green B, Chu K, Chumbes E, Smart J, Shealy J and Eastman L 2000 IEEE Electron Device Lett. 21 268
[15] Tirelli S, Lugani L, Marti D, Carlin J, Grandjean N and Bolognesi C 2013 IEEE Trans. Electron Devices 60 3091
[16] Zhou Y, Mi M, Yang M, Han Y, Wang P, Chen Y, Liu J, Gong C, Lu Y, Zhang M, Zhu Q, Ma X and Hao Y 2022 Appl. Phys. Lett. 120 062104
[17] Gonschorek M, Carlin J, Feltin E, Py M and Grandjean N 2006 Appl. Phys. Lett. 89 062106
[18] Medjdoub F, Carlin J, Gonschorek M, Feltin E, Py M, Ducatteau D, Gaquiére C, Grandjean N and Kohn E 2006 IEEE Int. Electron Devices Meeting (IEDM), 2006, p. 1
[19] Gong R, Wang J, Liu S, Dong Z, Yu M, Wen C, Cai Y and Zhang B 2010 Appl. Phys. Lett. 97 062115
[20] Lo C, Liu L, Chang C, Ren F, Craciun V, Pearton S, Heo Y, Laboutin O and Johnson J 2011 J. Vac. Sci. Technol. B 29 021002
[21] Chiu H, Chou L, Wang H, Kao H, Lin C, Chen J, Chyi J, Chen C and Chang K 2018 ECS Journal Solid State Sci. Technol. 7 Q185
[22] Fontseré A, Peréz-Tomás A, Placidi M, Llobet J, Baron N, Chenot S, Cordier Y, Moreno J, Gammon P, Jennings M, Porti M, Bayerl A, Lanza M and Nafría M 2011 Appl. Phys. Lett. 99 213504
[23] Wang C and Kim N 2012 Nanoscale Res. Lett. 7 1
[24] Sarazin N, Morvan E, di Forte Poisson M A, Oualli M, Gaquiére C, Jardel O, Drisse O, Tordjman M, Magis M and Delage S L 2009 IEEE Electron Device Lett. 31 11
[25] Sun H F, Alt A R, Benedickter H, Feltin E, Carlin J F, Gonschorek M, Grandjean N and Bolognesi C R 2010 IEEE Electron Device Lett. 31 293
[26] Lecourt F, Ketteniss N, Behmenburg H, Defrance N, Hoel V, Eickelkamp M, Vescan A, Giesen C, Heuken M and De Jaeger J C 2011 IEEE Electron Device Lett. 32 1537
[27] Wang R, Li G, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H 2011 IEEE Electron Device Lett. 32 892
[28] Lee D S, Chung J W, Wang H, Gao X, Guo S, Fay P and Palacios T 2011 IEEE Electron Device Lett. 32 755
[29] Tirelli S, Marti D, Sun H, Alt A R, Carlin J F, Grandjean N and Bolognesi C R 2011 IEEE Electron Device Lett. 32 1364
[30] Xu D, Chu K K, Diaz J A, Ashman M, Komiak J J, Pleasant L M, Creamer C, Nichols K, Duh K H G, Smith P M, Chao P C, Dong L and Ye P D 2015 IEEE Electron Device Lett. 36 442
[31] Xing W, Liu Z, Qiu H, Ng G I and Palacios T 2017 IEEE Electron Device Lett. 38 619
[32] Xing W, Liu Z, Qiu H, Ranjan K, Gao Y, Ng G I and Palacios T 2017 IEEE Electron Device Lett. 39 75
[33] Cui P, Mercante A, Lin G, Zhang J, Yao P, Prather D W and Zeng Y 2019 Appl. Phys. Express 12 104001
[34] Mi M, Wu S, Zhang M, Yang L, Hou B, Zhao Z, Guo L, Zheng X, Ma X and Hao Y 2019 Appl. Phys. Express 12 114001
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[3] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[4] High quality NbTiN films fabrication and rapid thermal annealing investigation
Huan Ge(葛欢), Yi-Rong Jin(金贻荣), Xiao-Hui Song(宋小会). Chin. Phys. B, 2019, 28(7): 077402.
[5] Effects of post-annealed floating gate on the performance of AlGaN/GaN heterostructure field-effect transistors
Peng Cui(崔鹏), Zhao-Jun Lin(林兆军), Chen Fu(付晨), Yan Liu(刘艳), Yuan-Jie Lv(吕元杰). Chin. Phys. B, 2017, 26(12): 127102.
[6] Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Lei Yang(杨磊), Yang Wang(王杨). Chin. Phys. B, 2017, 26(10): 107301.
[7] Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal-insulator phase transition properties
Liang Ji-Ran (梁继然), Wu Mai-Jun (吴劢君), Hu Ming (胡明), Liu Jian (刘剑), Zhu Nai-Wei (朱乃伟), Xia Xiao-Xu (夏晓旭), Chen Hong-Da (陈弘达). Chin. Phys. B, 2014, 23(7): 076801.
[8] Effects of rapid thermal annealing on room temperature NO2-sensing properties of WO3 thin film under LED radiation
Hu Ming (胡明), Jia Ding-Li (贾丁立), Liu Qing-Lin (刘青林), Li Ming-Da (李明达), Sun Peng (孙鹏). Chin. Phys. B, 2013, 22(6): 068204.
[9] Effects of rapid thermal annealing on the morphology and optical properity of ultrathin InSb film deposited on SiO2/Si substrate
Li Deng-Yue (李邓玥), Li Hong-Tao (李洪涛), Sun He-Hui (孙合辉), Zhao Lian-Cheng (赵连城 ). Chin. Phys. B, 2013, 22(2): 027802.
[10] Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate
Liu Zhi (刘智), Cheng Bu-Wen (成步文), Li Ya-Ming (李亚明), Li Chuan-Bo (李传波), Xue Chun-Lai (薛春来), Wang Qi-Ming (王启明). Chin. Phys. B, 2013, 22(11): 116804.
[11] Performance improvement of CdS/Cu(In,Ga)Se2 solar cells after rapid thermal annealing
Chen Dong-Sheng (陈东生), Yang Jie (杨洁), Xu Fei (徐飞), Zhou Ping-Hua (周平华), Du Hui-Wei (杜汇伟), Shi Jian-Wei (石建伟), Yu Zheng-Shan (于征汕), Zhang Yu-Hong (张玉红), Brian Bartholomeusz, Ma Zhong-Quan (马忠权). Chin. Phys. B, 2013, 22(1): 018801.
[12] Infrared response of the lateral PIN structure of a highly titanium-doped silicon-on-insulator material
Ma Zhi-Hua(马志华), Cao Quan(曹权), Zuo Yu-Hua(左玉华),Zheng Jun(郑军), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), and Wang Qi-Ming(王启明) . Chin. Phys. B, 2011, 20(10): 106104.
[13] Charge storage characteristics of hydrogenated nanocrystalline silicon film prepared by rapid thermal annealing
Li Zhi-Gang(李志刚), Long Shi-Bing(龙世兵), Liu Ming(刘明), Wang Cong-Shun(王丛舜), Jia Rui(贾锐), Lv Jin(闾锦), and Shi Yi(施毅). Chin. Phys. B, 2007, 16(3): 795-798.
No Suggested Reading articles found!