CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improved RF power performance of InAlN/GaN HEMT by optimizing rapid thermal annealing process for high-performance low-voltage terminal applications |
Yuwei Zhou(周雨威)1, Minhan Mi(宓珉瀚)2,†, Pengfei Wang(王鹏飞)2, Can Gong(龚灿)2, Yilin Chen(陈怡霖)1, Zhihong Chen(陈治宏)2, Jielong Liu(刘捷龙)1, Mei Yang(杨眉)1, Meng Zhang(张濛)2, Qing Zhu(朱青)2, Xiaohua Ma(马晓华)2, and Yue Hao(郝跃)2 |
1 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China; 2 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract Improved radio-frequency (RF) power performance of InAlN/GaN high electron mobility transistor (HEMT) is achieved by optimizing the rapid thermal annealing (RTA) process for high-performance low-voltage terminal applications. By optimizing the RTA temperature and time, the optimal annealing condition is found to enable low parasitic resistance and thus a high-performance device. Besides, compared with the non-optimized RTA HEMT, the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion from the barrier to the channel and buffer. Benefiting from the lowered parasitic resistance, improved maximum output current density of 2279 mA·mm-1 and higher peak extrinsic transconductance of 526 mS·mm-1 are obtained for the optimized RTA HEMT. In addition, due to the superior heterojunction quality, the optimized HEMT shows reduced off-state leakage current of 7×10-3 mA·mm-1 and suppressed current collapse of only 4%, compared with those of 1×10-1 mA·mm-1 and 15% for the non-optimized one. At 8 GHz and VDS of 6 V, a significantly improved power-added efficiency of 62% and output power density of 0.71 W·mm-1 are achieved for the optimized HEMT, as the result of the improvement in output current, knee voltage, off-state leakage current, and current collapse, which reveals the tremendous advantage of the optimized RTA HEMT in high-performance low-voltage terminal applications.
|
Received: 02 September 2022
Revised: 19 May 2023
Accepted manuscript online: 25 May 2023
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the National Key Research and Development Project of China (Grant No.2021YFB3602404), in part by the National Natural Science Foundation of China (Grant Nos.61904135 and 62234009), the Key R&D Program of Guangzhou (Grant No.202103020002), Wuhu and Xidian University special fund for industry-university-research cooperation (Grant No.XWYCXY-012021014-HT), the Fundamental Research Funds for the Central Universities (Grant No.XJS221110), the Natural Science Foundation of Shaanxi, China (Grant No.2022JM-377), and the Innovation Fund of Xidian University (Grant No.YJSJ23019). |
Corresponding Authors:
Minhan Mi
E-mail: miminhan@qq.com
|
Cite this article:
Yuwei Zhou(周雨威), Minhan Mi(宓珉瀚), Pengfei Wang(王鹏飞), Can Gong(龚灿), Yilin Chen(陈怡霖), Zhihong Chen(陈治宏), Jielong Liu(刘捷龙), Mei Yang(杨眉), Meng Zhang(张濛), Qing Zhu(朱青), Xiaohua Ma(马晓华), and Yue Hao(郝跃) Improved RF power performance of InAlN/GaN HEMT by optimizing rapid thermal annealing process for high-performance low-voltage terminal applications 2023 Chin. Phys. B 32 127102
|
[1] Zheng Z, Song W, Lei J, Qian Q, Wei J, Hua M, Yang S, Zhang L and Chen K J 2020 IEEE Electron Device Lett. 41 1304 [2] Then H, Chow L, Dasgupta S, Gardner S, Radosavljevic M, Rao V, Sung S, Yang G and Fischer P 2015 IEEE Int. Electron Devices Meeting (IEDM), 2015, p. 16.3.1 [3] Then H, Chow L, Dasgupta S, Gardner S, Radosavljevic M, Rao V, Sung S, Yang G and Chau R 2015 Symp. on VLSI Technology (VLSI Technology), 2015, p. T202 [4] Then H, Dasgupta S, Radosavljevic M, Gardner S, Sung S and Fischer P 2019 Device Research Conf. (DRC), 2019, p. 39 [5] Zhou Y, Zhu J, Mi M, Zhang M, Wang P, Han Y, Wu S, Liu J, Zhu Q, Chen Y, Hou B, Ma X and Hao Y 2021 IEEE J. Electron Devices Soc. 9 756 [6] Wu Y, Moore M, Saxler A, Wisleder T and Parikh P 2006 64th Device Research Conf. (DRC), 2006, p. 151 [7] Osawa K, Yoshikoshi H, Nitta A, Tanaka T, Mitani E and Satoh T 2016 46th European Microwave Conf. (EuMC), 2016, p. 397 [8] Nakajima S 2018 IEEE Int. Electron Devices Meeting (IEDM), 2018, p. 14.2.1 [9] Hao W, He Q, Zhou K, Xu G, Xiong W, Zhou X, Jian G, Chen C, Zhao X and Long S 2021 Appl. Phys. Lett. 118 043501 [10] Hao W, He Q, Zhou X, Zhao X, Xu G and Long S 2022 34th Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), 2022, pp. 105--108 [11] He Q, Zhou X, Li Q, Hao W, Liu Q, Han Z, Zhou K, Chen C, Peng J, Xu G, Zhao X, Wu X and Long S 2022 IEEE Electron Device Lett. 43 1933 [12] Zhang L, Shi J, Huang H, Liu X, Zhao S, Wang P and Zhang D 2015 IEEE Electron Device Lett. 36 896 [13] Zhang L, Liu Z, Zhao S, Lin M and Wang P 2017 IEEE Trans. on Electron Devices 64 1385 [14] Green B, Chu K, Chumbes E, Smart J, Shealy J and Eastman L 2000 IEEE Electron Device Lett. 21 268 [15] Tirelli S, Lugani L, Marti D, Carlin J, Grandjean N and Bolognesi C 2013 IEEE Trans. Electron Devices 60 3091 [16] Zhou Y, Mi M, Yang M, Han Y, Wang P, Chen Y, Liu J, Gong C, Lu Y, Zhang M, Zhu Q, Ma X and Hao Y 2022 Appl. Phys. Lett. 120 062104 [17] Gonschorek M, Carlin J, Feltin E, Py M and Grandjean N 2006 Appl. Phys. Lett. 89 062106 [18] Medjdoub F, Carlin J, Gonschorek M, Feltin E, Py M, Ducatteau D, Gaquiére C, Grandjean N and Kohn E 2006 IEEE Int. Electron Devices Meeting (IEDM), 2006, p. 1 [19] Gong R, Wang J, Liu S, Dong Z, Yu M, Wen C, Cai Y and Zhang B 2010 Appl. Phys. Lett. 97 062115 [20] Lo C, Liu L, Chang C, Ren F, Craciun V, Pearton S, Heo Y, Laboutin O and Johnson J 2011 J. Vac. Sci. Technol. B 29 021002 [21] Chiu H, Chou L, Wang H, Kao H, Lin C, Chen J, Chyi J, Chen C and Chang K 2018 ECS Journal Solid State Sci. Technol. 7 Q185 [22] Fontseré A, Peréz-Tomás A, Placidi M, Llobet J, Baron N, Chenot S, Cordier Y, Moreno J, Gammon P, Jennings M, Porti M, Bayerl A, Lanza M and Nafría M 2011 Appl. Phys. Lett. 99 213504 [23] Wang C and Kim N 2012 Nanoscale Res. Lett. 7 1 [24] Sarazin N, Morvan E, di Forte Poisson M A, Oualli M, Gaquiére C, Jardel O, Drisse O, Tordjman M, Magis M and Delage S L 2009 IEEE Electron Device Lett. 31 11 [25] Sun H F, Alt A R, Benedickter H, Feltin E, Carlin J F, Gonschorek M, Grandjean N and Bolognesi C R 2010 IEEE Electron Device Lett. 31 293 [26] Lecourt F, Ketteniss N, Behmenburg H, Defrance N, Hoel V, Eickelkamp M, Vescan A, Giesen C, Heuken M and De Jaeger J C 2011 IEEE Electron Device Lett. 32 1537 [27] Wang R, Li G, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H 2011 IEEE Electron Device Lett. 32 892 [28] Lee D S, Chung J W, Wang H, Gao X, Guo S, Fay P and Palacios T 2011 IEEE Electron Device Lett. 32 755 [29] Tirelli S, Marti D, Sun H, Alt A R, Carlin J F, Grandjean N and Bolognesi C R 2011 IEEE Electron Device Lett. 32 1364 [30] Xu D, Chu K K, Diaz J A, Ashman M, Komiak J J, Pleasant L M, Creamer C, Nichols K, Duh K H G, Smith P M, Chao P C, Dong L and Ye P D 2015 IEEE Electron Device Lett. 36 442 [31] Xing W, Liu Z, Qiu H, Ng G I and Palacios T 2017 IEEE Electron Device Lett. 38 619 [32] Xing W, Liu Z, Qiu H, Ranjan K, Gao Y, Ng G I and Palacios T 2017 IEEE Electron Device Lett. 39 75 [33] Cui P, Mercante A, Lin G, Zhang J, Yao P, Prather D W and Zeng Y 2019 Appl. Phys. Express 12 104001 [34] Mi M, Wu S, Zhang M, Yang L, Hou B, Zhao Z, Guo L, Zheng X, Ma X and Hao Y 2019 Appl. Phys. Express 12 114001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|