|
|
Controlling stationary one-way steering in a three-level atomic ensemble |
Jie Peng(彭洁)1, Jun Xu(徐俊)2,†, Hua-Zhong Liu(刘华忠)1, and Zhang-Li Lai(赖章丽)3 |
1 Department of Basic Courses, Wuhan Donghu University, Wuhan 430071, China; 2 College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China; 3 College of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China |
|
|
Abstract We propose a scheme for establishing the stationary one-way quantum steering in a three-level Λ-type atomic ensemble. In our system, the cavity modes are generated from two atomic dipole-allowed transitions, which are in turn driven by two external classical fields. The atomic ensemble can act as an engineered reservoir to put two cavity modes into a squeezed state by two Bogoliubov dissipation pathways. When the damping rates of the two cavity modes are different, the steady-state one-way quantum steering of the intracavity and output fields is presented by adjusting the normalized detuning. The physical mechanism is analyzed based on a dressed state representation and Bogoliubov mode transformation. The achieved optical one-way quantum steering scheme has potential applications in quantum secret information sharing protocols.
|
Received: 03 June 2023
Revised: 07 September 2023
Accepted manuscript online: 09 September 2023
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
Fund: Project supported by Wuhan Donghu University Youth Foundation of Natural science (Grant No.2022dhzk009). |
Corresponding Authors:
Jun Xu
E-mail: junxu@ccnu.edu.cn
|
Cite this article:
Jie Peng(彭洁), Jun Xu(徐俊), Hua-Zhong Liu(刘华忠), and Zhang-Li Lai(赖章丽) Controlling stationary one-way steering in a three-level atomic ensemble 2023 Chin. Phys. B 32 120305
|
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [2] Schrödinger E 1935 Mathematical Proceedings of the Cambridge Philosophical Society 31 555 [3] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402 [4] Uola R, Costa A C S, Nguyen H C and Gühne O 2020 Rev. Mod. Phys. 92 015001 [5] Wollmann S, Walk N, Bennet A J, Wiseman H M and Pryde G J 2016 Phys. Rev. Lett. 116 160403 [6] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116 [7] Nicolas B, Daniel C, Stefano P, Valerio S and Stephanie W 2014 Rev. Mod. Phys. 86 419 [8] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275 [9] Joseph B, Tamás V, Marco T Q and Nicolas B 2014 Phys. Rev. Lett. 112 200402 [10] Qin Z Z, Deng X W, Tian C X, Wang M H, Su X L, Xie C D and Peng K C 2017 Phys. Rev. A 95 052114 [11] Chen S L, Costantino B, Yeong C L and Chen Y N 2018 Phys. Rev. A 98 042127 [12] He Q Y, Laura R Z, Gerardo A and Margaret R D 2015 Phys. Rev. Lett. 115 180502 [13] Osorio C I, Bruno N, Sangouard N, Zbinden H, Gisin N and Thew R T 2012 Phys. Rev. A 86 023815 [14] Jaeyoon C, Dimitris G A and Sougato B 2008 Phys. Rev. A 78 022323 [15] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112 [16] Walborn S P, Salles A, Gomes R M, Toscano F and Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402 [17] Guhne O L and Lewenstein M 2004 Phys. Rev. A 70 022316 [18] Liu S, Mu L Z and Fan H 2015 Phys. Rev. A 91 042133 [19] Kogias I, Lee A R, Ragy S, and Adesso G 2015 Phys. Rev. Lett. 114 060403 [20] Wang L, Lv S C and Jing J T 2017 Opt. Exp. 25 17457 [21] Cavalcanti D and Skrzypczyk P 2019 Phys. Rev. A 93 052112 [22] Armstrong S, Wang M Teh R Y, Gong Q H, He Q Y, Janousek J, Bachor H A, Reid M D and Lam P K 2015 Nat. Phys. 11 167 [23] Deng X W, Xiang Y, Tian C X, Adesso G, He Q Y, Gong Q H, Su X L, Xie C D and Peng K C 2017 Phys. Rev. Lett. 118 230501 [24] Liu Y, Zheng K M, Kang H J, Han D M, Wang M H, Zhang L J, Su X L and Peng K C 2022 npj Quantum Inf. 8 38 [25] Deng X, Liu Y, Wang M H, Su X L and Peng K C 2021 npj Quantum Inf. 7 65 [26] Smith D H, Gillett G, de Almeida M P, Branciard C, Fedrizzi A, Weinhold T J, Lita A, Calkins B, Gerrits T, Wiseman H M, Nam S W and White A G 2012 Nat. Commun. 3 625 [27] Händchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner R F and Schnabel R 2012 Nat. Photon. 6 596 [28] He Q Y, Gong Q H and Reid M D 2015 Phys. Rev. Lett. 114 060402 [29] Xiao Y, Ye X J, Sun K, Xu J S, Li C F and Guo G C 2017 Phys. Rev. Lett. 118 140404 [30] Zoller P, Marte M and Walls D F 1987 Phys. Rev. A 35 198 [31] Rebić S, Vitali D, Ottaviani C, Tombesi P, Artoni M, Cataliotti F and Corbalán R 2004 Phys. Rev. A 70 032317 [32] Sowik K, Filter R, Straubel J, Lederer F and Rockstuhl C 2013 Phys. Rev. B 88 195414 [33] Johnson W R, Guo D S, Idrees M and Sapirstein J 1985 Phys. Rev. A 32 2093 [34] Noh H R and Moon H S 2015 Phys. Rev. A 92 013807 [35] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2011 Phys. Rev. A 84 064302 [36] Rao S, Hu X M, Li L C and Xu J 2016 J. Phys. B: At. Mol. Opt. Phys. 49 225502 [37] Xu j, Wang F and Ge J 2015 Phys. Rev. A 92 063812 [39] He Q Y, Ficek Z 2014 Phys. Rev. A 89 022332 [40] Dabrowski M, Mazelanik M, Parniak M, Leszczyński A, Lipka M and Wasilewski W 2018 Phys. Rev. A 98 042126 [41] Liu Y, Yin C, Yu X, Li F, Zhang Y P and He Q Y 2019 Opt. Express 27 33070 [42] Zhong W X, Cheng G L and Hu X M 2017 Opt. Express 25 11584 [43] Lawrie B J, Evans P G and Pooser R C 2013 Phys. Rev. Lett. 110 156802 [44] Qin Z Z, Cao L M, Wang H L, Marion A M, Zhang W P and Jing J T 2014 Phys. Rev. Lett. 113 023602 [45] Pooser R C, Savino N, Batson E, Beckey J L, Garcia J and Lawrie B J 2020 Phys. Rev. Lett. 124 230504 [46] Braunstein D and Shuker R 2001 Phys. Rev. A 64 053812 [47] Kreibich M, Main J and Wunner G 2012 Phys. Rev. A 86 013608 [48] Gardiner C W and Zoller P 2000 Quantum Noise 2nd edn (Berlin: Springer-Verlag) pp. 15--20 [49] Scully M O and Zubairy M S 1997 Quantum Optics (New York: Cambridge University Press) pp. 20--30 [50] Routh E J 1877 A treatise on the stability of a given state of motion (London: Macmillan) pp. 12--14 [51] Hurwitz A 1895 Math Ann. 46 273 [52] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288 [53] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 [54] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318 [55] Plenio M B 2005 Phys. Rev. Lett. 95 090503 [56] Aiello A 2000 Phys. Rev. A 62 063813 [57] Deng Z J, Yan X B, Wang Y D and Wu C W 2016 Phys. Rev. A 93 033842 [58] Deng Z J, Habraken S J and Marquardt F 2016 New J. Phys. 18 063022 [59] Opanchuk B, Arnaud L and Reid M D 2014 Phys. Rev. A 89 062101 [60] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301 [61] Gehring T, Händchen V, Duhme J, Furrer F, Franz T, Pacher C, Werner R F and Schnabel R 2015 Nat. Commun. 6 8795 [62] Walk N, Hosseni S, Geng J, Thearle O, Haw J Y, Armstrong S, Assad S M, Janousek J, Ralph T C, Symul T, Wiseman H M and Lam P K 2016 Optica 3 634 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|