Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120305    DOI: 10.1088/1674-1056/acf82b
GENERAL Prev   Next  

Controlling stationary one-way steering in a three-level atomic ensemble

Jie Peng(彭洁)1, Jun Xu(徐俊)2,†, Hua-Zhong Liu(刘华忠)1, and Zhang-Li Lai(赖章丽)3
1 Department of Basic Courses, Wuhan Donghu University, Wuhan 430071, China;
2 College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China;
3 College of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China
Abstract  We propose a scheme for establishing the stationary one-way quantum steering in a three-level Λ-type atomic ensemble. In our system, the cavity modes are generated from two atomic dipole-allowed transitions, which are in turn driven by two external classical fields. The atomic ensemble can act as an engineered reservoir to put two cavity modes into a squeezed state by two Bogoliubov dissipation pathways. When the damping rates of the two cavity modes are different, the steady-state one-way quantum steering of the intracavity and output fields is presented by adjusting the normalized detuning. The physical mechanism is analyzed based on a dressed state representation and Bogoliubov mode transformation. The achieved optical one-way quantum steering scheme has potential applications in quantum secret information sharing protocols.
Keywords:  one-way quantum steering      entanglement      quantum correlation      reservoir-engineered method  
Received:  03 June 2023      Revised:  07 September 2023      Accepted manuscript online:  09 September 2023
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: Project supported by Wuhan Donghu University Youth Foundation of Natural science (Grant No.2022dhzk009).
Corresponding Authors:  Jun Xu     E-mail:  junxu@ccnu.edu.cn

Cite this article: 

Jie Peng(彭洁), Jun Xu(徐俊), Hua-Zhong Liu(刘华忠), and Zhang-Li Lai(赖章丽) Controlling stationary one-way steering in a three-level atomic ensemble 2023 Chin. Phys. B 32 120305

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schrödinger E 1935 Mathematical Proceedings of the Cambridge Philosophical Society 31 555
[3] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[4] Uola R, Costa A C S, Nguyen H C and Gühne O 2020 Rev. Mod. Phys. 92 015001
[5] Wollmann S, Walk N, Bennet A J, Wiseman H M and Pryde G J 2016 Phys. Rev. Lett. 116 160403
[6] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116
[7] Nicolas B, Daniel C, Stefano P, Valerio S and Stephanie W 2014 Rev. Mod. Phys. 86 419
[8] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[9] Joseph B, Tamás V, Marco T Q and Nicolas B 2014 Phys. Rev. Lett. 112 200402
[10] Qin Z Z, Deng X W, Tian C X, Wang M H, Su X L, Xie C D and Peng K C 2017 Phys. Rev. A 95 052114
[11] Chen S L, Costantino B, Yeong C L and Chen Y N 2018 Phys. Rev. A 98 042127
[12] He Q Y, Laura R Z, Gerardo A and Margaret R D 2015 Phys. Rev. Lett. 115 180502
[13] Osorio C I, Bruno N, Sangouard N, Zbinden H, Gisin N and Thew R T 2012 Phys. Rev. A 86 023815
[14] Jaeyoon C, Dimitris G A and Sougato B 2008 Phys. Rev. A 78 022323
[15] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112
[16] Walborn S P, Salles A, Gomes R M, Toscano F and Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402
[17] Guhne O L and Lewenstein M 2004 Phys. Rev. A 70 022316
[18] Liu S, Mu L Z and Fan H 2015 Phys. Rev. A 91 042133
[19] Kogias I, Lee A R, Ragy S, and Adesso G 2015 Phys. Rev. Lett. 114 060403
[20] Wang L, Lv S C and Jing J T 2017 Opt. Exp. 25 17457
[21] Cavalcanti D and Skrzypczyk P 2019 Phys. Rev. A 93 052112
[22] Armstrong S, Wang M Teh R Y, Gong Q H, He Q Y, Janousek J, Bachor H A, Reid M D and Lam P K 2015 Nat. Phys. 11 167
[23] Deng X W, Xiang Y, Tian C X, Adesso G, He Q Y, Gong Q H, Su X L, Xie C D and Peng K C 2017 Phys. Rev. Lett. 118 230501
[24] Liu Y, Zheng K M, Kang H J, Han D M, Wang M H, Zhang L J, Su X L and Peng K C 2022 npj Quantum Inf. 8 38
[25] Deng X, Liu Y, Wang M H, Su X L and Peng K C 2021 npj Quantum Inf. 7 65
[26] Smith D H, Gillett G, de Almeida M P, Branciard C, Fedrizzi A, Weinhold T J, Lita A, Calkins B, Gerrits T, Wiseman H M, Nam S W and White A G 2012 Nat. Commun. 3 625
[27] Händchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner R F and Schnabel R 2012 Nat. Photon. 6 596
[28] He Q Y, Gong Q H and Reid M D 2015 Phys. Rev. Lett. 114 060402
[29] Xiao Y, Ye X J, Sun K, Xu J S, Li C F and Guo G C 2017 Phys. Rev. Lett. 118 140404
[30] Zoller P, Marte M and Walls D F 1987 Phys. Rev. A 35 198
[31] Rebić S, Vitali D, Ottaviani C, Tombesi P, Artoni M, Cataliotti F and Corbalán R 2004 Phys. Rev. A 70 032317
[32] Sowik K, Filter R, Straubel J, Lederer F and Rockstuhl C 2013 Phys. Rev. B 88 195414
[33] Johnson W R, Guo D S, Idrees M and Sapirstein J 1985 Phys. Rev. A 32 2093
[34] Noh H R and Moon H S 2015 Phys. Rev. A 92 013807
[35] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2011 Phys. Rev. A 84 064302
[36] Rao S, Hu X M, Li L C and Xu J 2016 J. Phys. B: At. Mol. Opt. Phys. 49 225502
[37] Xu j, Wang F and Ge J 2015 Phys. Rev. A 92 063812
[39] He Q Y, Ficek Z 2014 Phys. Rev. A 89 022332
[40] Dabrowski M, Mazelanik M, Parniak M, Leszczyński A, Lipka M and Wasilewski W 2018 Phys. Rev. A 98 042126
[41] Liu Y, Yin C, Yu X, Li F, Zhang Y P and He Q Y 2019 Opt. Express 27 33070
[42] Zhong W X, Cheng G L and Hu X M 2017 Opt. Express 25 11584
[43] Lawrie B J, Evans P G and Pooser R C 2013 Phys. Rev. Lett. 110 156802
[44] Qin Z Z, Cao L M, Wang H L, Marion A M, Zhang W P and Jing J T 2014 Phys. Rev. Lett. 113 023602
[45] Pooser R C, Savino N, Batson E, Beckey J L, Garcia J and Lawrie B J 2020 Phys. Rev. Lett. 124 230504
[46] Braunstein D and Shuker R 2001 Phys. Rev. A 64 053812
[47] Kreibich M, Main J and Wunner G 2012 Phys. Rev. A 86 013608
[48] Gardiner C W and Zoller P 2000 Quantum Noise 2nd edn (Berlin: Springer-Verlag) pp. 15--20
[49] Scully M O and Zubairy M S 1997 Quantum Optics (New York: Cambridge University Press) pp. 20--30
[50] Routh E J 1877 A treatise on the stability of a given state of motion (London: Macmillan) pp. 12--14
[51] Hurwitz A 1895 Math Ann. 46 273
[52] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[53] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[54] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[55] Plenio M B 2005 Phys. Rev. Lett. 95 090503
[56] Aiello A 2000 Phys. Rev. A 62 063813
[57] Deng Z J, Yan X B, Wang Y D and Wu C W 2016 Phys. Rev. A 93 033842
[58] Deng Z J, Habraken S J and Marquardt F 2016 New J. Phys. 18 063022
[59] Opanchuk B, Arnaud L and Reid M D 2014 Phys. Rev. A 89 062101
[60] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301
[61] Gehring T, Händchen V, Duhme J, Furrer F, Franz T, Pacher C, Werner R F and Schnabel R 2015 Nat. Commun. 6 8795
[62] Walk N, Hosseni S, Geng J, Thearle O, Haw J Y, Armstrong S, Assad S M, Janousek J, Ralph T C, Symul T, Wiseman H M and Lam P K 2016 Optica 3 634
[1] Quantum correlation enhanced bound of the information exclusion principle
Jun Zhang(张钧), Kan He(贺衎), Hao Zhang(张昊), and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(9): 090301.
[2] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[3] Algorithm for evaluating distance-based entanglement measures
Yixuan Hu(胡奕轩), Ye-Chao Liu(刘烨超), and Jiangwei Shang(尚江伟). Chin. Phys. B, 2023, 32(8): 080307.
[4] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[5] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[6] Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志). Chin. Phys. B, 2023, 32(6): 060301.
[7] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[8] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[9] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[10] New light fields based on integration theory within the Weyl ordering product of operators
Ke Zhang(张科), Lan-Lan Li(李兰兰), Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040301.
[11] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[12] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[13] Compact generation scheme of path-frequency hyperentangled photons using 2D periodical nonlinear photonic crystal
Yang-He Chen(陈洋河), Bo Ji(季波), Nian-Qin Li(李念芹), Zhen Jiang(姜震), Wei Li(李维),Yu-Dong Li(李昱东), Liang-Sen Feng(冯梁森), Teng-Fei Wu(武腾飞), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(12): 120307.
[14] Parameterized monogamy and polygamy relations of multipartite entanglement
Zhong-Xi Shen(沈中喜), Ke-Ke Wang(王珂珂), and Shao-Ming Fei(费少明). Chin. Phys. B, 2023, 32(12): 120303.
[15] Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels
Ji-Hao Fan(樊继豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陈一骁). Chin. Phys. B, 2023, 32(12): 120304.
No Suggested Reading articles found!