Quantum correlation enhanced bound of the information exclusion principle
Jun Zhang(张钧)1,2,†, Kan He(贺衎)2, Hao Zhang(张昊)3, and Chang-Shui Yu(于长水)4,‡
1 College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China; 2 College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China; 3 College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; 4 School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract We investigate the information exclusion principle for multiple measurements with assistance of multiple quantum memories that are well bounded by the upper and lower bounds. The lower bound depends on the observables' complementarity and the complementarity of uncertainty whilst the upper bound includes the complementarity of the observables, quantum discord, and quantum condition entropy. In quantum measurement processing, there exists a relationship between the complementarity of uncertainty and the complementarity of information. In addition, based on the information exclusion principle the complementarity of uncertainty and the shareability of quantum discord can exist as an essential factor to enhance the bounds of each other in the presence of quantum memory.
(Entanglement measures, witnesses, and other characterizations)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12271394, 11775040, and 12011530014), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201801D221032 and 201801D121016), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0178), the Key Research and Development Program of Shanxi Province (Grant No. 202102010101004), and the China Scholarship Council.
Corresponding Authors:
Jun Zhang, Chang-Shui Yu
E-mail: zhang6347@163.com;ycs@dlut.edu.cn
Cite this article:
Jun Zhang(张钧), Kan He(贺衎), Hao Zhang(张昊), and Chang-Shui Yu(于长水) Quantum correlation enhanced bound of the information exclusion principle 2023 Chin. Phys. B 32 090301
[1] Cover T M and Thomas J A 2005 Elements of Information Theory, 2nd edn. (New York: Wiley) pp. 13-22 [2] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys.6 659 [3] Koashi M 2009 New J. Phys.11 045018 [4] Devetak I and Winter A 2005 Proc. R. Soc. Lond. A461 207 [5] Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commun.3 634 [6] Dupuis F, Fawzi O and Wehner S 2015 IEEE Trans. Inf. Theory61 1093 [7] Koenig R, Wehner S and Wullschleger J 2012 IEEE Trans. Inf. Theory58 1962 [8] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys.7 757 [9] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys.7 752 [10] Bagchi S, Datta C and Agrawal P 2022 Phys. Rev. A106 022203 [11] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys.7 757 [12] Huang Y C 2010 Phys. Rev. A82 012335 [13] Berta M, Coles P J and Wehner S 2014 Phys. Rev. A90 062127 [14] Wehner S and Winter A 2010 New J. Phys.12 025009 [15] Coles P J, Berta M, Tomamichel M and Wehner S 2017 Rev. Mod. Phys.89 015002 [16] Sun J, Sun Y N, Li C F and Guo G C 2015 Chin. Phys. Lett.32 90302 [17] Li Z Y 2016 Chin. Phys. Lett.33 080302 [18] Ben-Israel A, Knips L, Dziewior J, et al. 2017 Chin. Phys. Lett.34 20301 [19] Fan H 2018 Acta Phys. Sin.67 120301 (in Chinese) [20] Ke Z J, Meng Y, Wang Y T, et al. 2020 Chin. Phys. B29 050307 [21] Deutsch D 1983 Phys. Rev. Lett.50 631 [22] Bialynicki-Birula I and Mycielski J 1975 Commun. Math. Phys.44 129 [23] Kraus K 1987 Phys. Rev. D35 3070 [24] Maassen H and Uffink J B M 1988 Phys. Rev. Lett.60 1103 [25] Fu S S, Luo S L and Sun Y 2019 Acta Phys. Sin.68 030301 (in Chinese) [26] Liu F, Gao D M and Cai X Q 2019 Acta Phys. Sin.68 230301 (in Chinese) [27] Yang H, Qin L G, Tian L J and Ma H Y 2020 Chin. Phys. B29 040303 [28] Ballester M A and Wehner S 2007 Phys. Rev. A75 022319 [29] Wu S J, Yu S X and Molmer K 2009 Phys. Rev. A79 022104 [30] Renes J M and Boileau J C 2009 Phys. Rev. Lett.103 020402 [31] Tomamichel M and Renner R 2011 Phys. Rev. Lett.106 110506 [32] Coles P J, Yu L, Gheorghiu V and Griffiths R B 2011 Phys. Rev. A83 062338 [33] Pati A K, Wilde M M, Usha Devi A R, Rajagopal A K and Sudha 2012 Phys. Rev. A86 042105 [34] Hu M L and Fan H 2013 Phys. Rev. A87 022314 [35] Rudnicki Ƚ, Puchal a Z and Życzkowski K 2014 Phys. Rev. A89 052115 [36] Liu S, Mu L Z and Fan H 2015 Phys. Rev. A91 042133 [37] Adabi F, Salimi S and Haseli S 2016 Phys. Rev. A93 062123 [38] Xiao Y L, Jing N H, Fei S M, Li T, Li-Jost X Q, Ma T and Wang Z X 2016 Phys. Rev. A93 042125 [39] Ming F, Wang D, Fan X G, Shi W N, Ye L and Chen J L 2020 Phys. Rev. A102 012206 [40] Hall M J W 1995 Phys. Rev. Lett.74 3307 [41] Lin B S and Heng T H 2016 Chin. Phys. Lett.33 110303 [42] Zhao W L and Jie Q L 2020 Chin. Phys. B29 080302 [43] Grudka A, Horodecki M, Horodecki P, Horodecki R, K lobus W and Pankowski L 2013 Phys. Rev. A88 032106 [44] Coles P J and Piani M 2014 Phys. Rev. A89 022112 [45] Zhang J, Zhang Y and Yu C S 2015 Sci. Rep.5 11701 [46] Xiao Y L, Jing N H and Li-Jost X Q 2016 Sci. Rep.6 30440 [47] Ollivier H and Zurek W H 2001 Phys. Rev. Lett.88 017901 [48] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen.34 6899 [49] Xi Z J, Lu X M, Wang X G and Li Y M 2012 Phys. Rev. A85 032109 [50] Hu M L and Fan H 2013 Phys. Rev. A88 014105 [51] Dolatkhah H, Mohammadi A and Haseli S 2022 Sci. Rep.12 4101
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.