|
|
Complete population transfer between next-adjacent energy levels of a transmon qudit |
Yingshan Zhang(张颖珊)1,†, Pei Liu(刘培)2,†, Jingning Zhang(张静宁)1, Ruixia Wang(王睿侠)1, Weiyang Liu(刘伟洋)1, Jiaxiu Han(韩佳秀)1,‡, Yirong Jin(金贻荣)1, and Haifeng Yu(于海峰)1 |
1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 2 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract The utilization of qudits in quantum systems has led to significant advantages in quantum computation and information processing. Therefore, qudits have gained increased attention in recent research for their precise and efficient operations. In this work, we demonstrate the complete population transfer between the next-adjacent energy levels of a transmon qudit using the Pythagorean coupling method and energy level mapping. We achieve a |0> to |2> transfer with a process fidelity of 97.76% in the subspace spanned by |0> to |2>. Moreover, the transfer operation is achieved within a remarkably fast timescale, as short as 20 ns. This study may present a promising avenue for enhancing the operation flexibility and efficiency of qudits in future implementations.
|
Received: 01 June 2023
Revised: 02 October 2023
Accepted manuscript online: 13 October 2023
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11890704, 12004042, 12104055, and 12104056), Natural Science Foundation of Beijing (Grant No.Z190012), and Key Area Research and Development Program of Guangdong Province (Grant No.2018B030326001). |
Corresponding Authors:
Jiaxiu Han
E-mail: hanjx@baqis.ac.cn
|
Cite this article:
Yingshan Zhang(张颖珊), Pei Liu(刘培), Jingning Zhang(张静宁), Ruixia Wang(王睿侠), Weiyang Liu(刘伟洋), Jiaxiu Han(韩佳秀), Yirong Jin(金贻荣), and Haifeng Yu(于海峰) Complete population transfer between next-adjacent energy levels of a transmon qudit 2023 Chin. Phys. B 32 120306
|
[1] Wang Y, Hu Z, Sanders B C and Kais S 2020 Frontiers in Physics 8 589504 [2] Cozzolino D, Da Lio B, Bacco D and Oxenlowe L K 2019 Advanced Quantum Technologies 2 1900038 [3] Seifert L M, Li Z, Roy T, Schuster D I, Chong F T and Baker J M 2023 arXiv:2304.11159 [4] Illa M, Robin C E P and Savage M J 2023 arXiv:2305.11941 [5] Janković D, Hartmann J G, Ruben M and Hervieux P A 2023 arXiv:2302.04543 [6] Gustafson E 2022 arXiv:2201.04546 [7] Sheridan L and Scarani V 2010 Phys. Rev. A 82 030301 [8] Hu X M, Guo Y, Liu B H, Huang Y F, Li C F and Guo G C 2018 Sci. Adv. 4 eaat9304 [9] Chiesa A, Petiziol F, Macaluso E, Wimberger S, Santini P and Carretta S 2021 AIP Advances 11 025134 [10] Eichler C, Lang C, Fink J M, Govenius J, Filipp S and Wallraff A 2012 Phys. Rev. Lett. 109 240501 [11] Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Y, Zheng D N, Han S, Zhong Y P, Wang H, Liu Y x and Zhao S P 2016 Nat. Commun. 7 11018 [12] Zheng W, Zhang Y, Dong Y, Xu J, Wang Z, Wang X, Li Y, Lan D, Zhao J, Li S, Tan X and Yang Y 2022 npj Quantum Information 8 1 [13] Wu X, Tomarken S L, Petersson N A, Martinez L A, Rosen Y J and DuBois J L 2020 Phys. Rev. Lett. 125 170502 [14] Suchowski H, Silberberg Y and Uskov D B 2011 Phys. Rev. A 84 013414 [15] Svetitsky E, Suchowski H, Resh R, Shalibo Y, Martinis J M and Katz N 2014 Nat. Commun. 5 5617 [16] Koch J, Terri M Y, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 [17] Kjaergaard M, Schwartz M E, Braumüller J, Krantz P, Wang J I J, Gustavsson S and Oliver W D 2020 Annual Review of Condensed Matter Physics 11 369 [18] Cao S, Bakr M, Campanaro G, Fasciati S D, Wills J, Lall D, Shteynas B, Chidambaram V, Rungger I and Leek P 2023 arXiv:2303.04796 [19] Kristen M, Schneider A, Stehli A, Wolz T, Danilin S, Ku H S, Long J, Wu X, Lake R, Pappas D P et al. 2020 npj Quantum Information 6 57 [20] Liu T, Su Q P, Yang J H, Zhang Y, Xiong S J, Liu J M and Yang C P 2017 Scientific Reports 7 7039 [21] Place A P, Rodgers L V, Mundada P, Smitham B M, Fitzpatrick M, Leng Z, Premkumar A, Bryon J, Vrajitoarea A, Sussman S, Cheng G, Madhavan T, Babla H K, Le X H, Gang Y, Jäck B, Gyenis A, Yao N, Cava R J, de Leon N P and Houck A A 2021 Nat. Commun. 12 1779 [22] Wang C, Li X, Xu H, Li Z, Wang J, Yang Z, Mi Z, Liang X, Su T, Yang C, Wang G, Wang W, Li Y, Chen M, Li C, Linghu K, Han J, Zhang Y, Feng Y, Song Y, Ma T, Zhang J, Wang R, Zhao P, Liu W, Xue G, Jin Y and Yu H 2022 npj Quantum Information 8 1 [23] Liu P, Wang R, Zhang J N, Zhang Y, Cai X, Xu H, Li Z, Han J, Li X, Xue G, Liu W, You L, Jin Y and Yu H 2023 Phys. Rev. X 13 021028 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|