Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120306    DOI: 10.1088/1674-1056/ad02e4
RAPID COMMUNICATION Prev   Next  

Complete population transfer between next-adjacent energy levels of a transmon qudit

Yingshan Zhang(张颖珊)1,†, Pei Liu(刘培)2,†, Jingning Zhang(张静宁)1, Ruixia Wang(王睿侠)1, Weiyang Liu(刘伟洋)1, Jiaxiu Han(韩佳秀)1,‡, Yirong Jin(金贻荣)1, and Haifeng Yu(于海峰)1
1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
2 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  The utilization of qudits in quantum systems has led to significant advantages in quantum computation and information processing. Therefore, qudits have gained increased attention in recent research for their precise and efficient operations. In this work, we demonstrate the complete population transfer between the next-adjacent energy levels of a transmon qudit using the Pythagorean coupling method and energy level mapping. We achieve a |0> to |2> transfer with a process fidelity of 97.76% in the subspace spanned by |0> to |2>. Moreover, the transfer operation is achieved within a remarkably fast timescale, as short as 20 ns. This study may present a promising avenue for enhancing the operation flexibility and efficiency of qudits in future implementations.
Keywords:  transmon qudit      complete population transfer      Pythagorean coupling  
Received:  01 June 2023      Revised:  02 October 2023      Accepted manuscript online:  13 October 2023
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11890704, 12004042, 12104055, and 12104056), Natural Science Foundation of Beijing (Grant No.Z190012), and Key Area Research and Development Program of Guangdong Province (Grant No.2018B030326001).
Corresponding Authors:  Jiaxiu Han     E-mail:  hanjx@baqis.ac.cn

Cite this article: 

Yingshan Zhang(张颖珊), Pei Liu(刘培), Jingning Zhang(张静宁), Ruixia Wang(王睿侠), Weiyang Liu(刘伟洋), Jiaxiu Han(韩佳秀), Yirong Jin(金贻荣), and Haifeng Yu(于海峰) Complete population transfer between next-adjacent energy levels of a transmon qudit 2023 Chin. Phys. B 32 120306

[1] Wang Y, Hu Z, Sanders B C and Kais S 2020 Frontiers in Physics 8 589504
[2] Cozzolino D, Da Lio B, Bacco D and Oxenlowe L K 2019 Advanced Quantum Technologies 2 1900038
[3] Seifert L M, Li Z, Roy T, Schuster D I, Chong F T and Baker J M 2023 arXiv:2304.11159
[4] Illa M, Robin C E P and Savage M J 2023 arXiv:2305.11941
[5] Janković D, Hartmann J G, Ruben M and Hervieux P A 2023 arXiv:2302.04543
[6] Gustafson E 2022 arXiv:2201.04546
[7] Sheridan L and Scarani V 2010 Phys. Rev. A 82 030301
[8] Hu X M, Guo Y, Liu B H, Huang Y F, Li C F and Guo G C 2018 Sci. Adv. 4 eaat9304
[9] Chiesa A, Petiziol F, Macaluso E, Wimberger S, Santini P and Carretta S 2021 AIP Advances 11 025134
[10] Eichler C, Lang C, Fink J M, Govenius J, Filipp S and Wallraff A 2012 Phys. Rev. Lett. 109 240501
[11] Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Y, Zheng D N, Han S, Zhong Y P, Wang H, Liu Y x and Zhao S P 2016 Nat. Commun. 7 11018
[12] Zheng W, Zhang Y, Dong Y, Xu J, Wang Z, Wang X, Li Y, Lan D, Zhao J, Li S, Tan X and Yang Y 2022 npj Quantum Information 8 1
[13] Wu X, Tomarken S L, Petersson N A, Martinez L A, Rosen Y J and DuBois J L 2020 Phys. Rev. Lett. 125 170502
[14] Suchowski H, Silberberg Y and Uskov D B 2011 Phys. Rev. A 84 013414
[15] Svetitsky E, Suchowski H, Resh R, Shalibo Y, Martinis J M and Katz N 2014 Nat. Commun. 5 5617
[16] Koch J, Terri M Y, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[17] Kjaergaard M, Schwartz M E, Braumüller J, Krantz P, Wang J I J, Gustavsson S and Oliver W D 2020 Annual Review of Condensed Matter Physics 11 369
[18] Cao S, Bakr M, Campanaro G, Fasciati S D, Wills J, Lall D, Shteynas B, Chidambaram V, Rungger I and Leek P 2023 arXiv:2303.04796
[19] Kristen M, Schneider A, Stehli A, Wolz T, Danilin S, Ku H S, Long J, Wu X, Lake R, Pappas D P et al. 2020 npj Quantum Information 6 57
[20] Liu T, Su Q P, Yang J H, Zhang Y, Xiong S J, Liu J M and Yang C P 2017 Scientific Reports 7 7039
[21] Place A P, Rodgers L V, Mundada P, Smitham B M, Fitzpatrick M, Leng Z, Premkumar A, Bryon J, Vrajitoarea A, Sussman S, Cheng G, Madhavan T, Babla H K, Le X H, Gang Y, Jäck B, Gyenis A, Yao N, Cava R J, de Leon N P and Houck A A 2021 Nat. Commun. 12 1779
[22] Wang C, Li X, Xu H, Li Z, Wang J, Yang Z, Mi Z, Liang X, Su T, Yang C, Wang G, Wang W, Li Y, Chen M, Li C, Linghu K, Han J, Zhang Y, Feng Y, Song Y, Ma T, Zhang J, Wang R, Zhao P, Liu W, Xue G, Jin Y and Yu H 2022 npj Quantum Information 8 1
[23] Liu P, Wang R, Zhang J N, Zhang Y, Cai X, Xu H, Li Z, Han J, Li X, Xue G, Liu W, You L, Jin Y and Yu H 2023 Phys. Rev. X 13 021028
[1] Deep learning framework for time series classification based on multiple imaging and hybrid quantum neural networks
Jianshe Xie(谢建设) and Yumin Dong(董玉民). Chin. Phys. B, 2023, 32(12): 120302.
[2] Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels
Ji-Hao Fan(樊继豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陈一骁). Chin. Phys. B, 2023, 32(12): 120304.
[3] Single-flux-quantum-based qubit control with tunable driving strength
Kuang Liu(刘匡), Yifan Wang(王一凡), Bo Ji(季波), Wanpeng Gao(高万鹏), Zhirong Lin(林志荣), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(12): 128501.
[4] Blind quantum computation with a client performing different single-qubit gates
Guang-Yang Wu(吴光阳), Zhen Yang(杨振), Yu-Zhan Yan(严玉瞻), Yuan-Mao Luo(罗元茂), Ming-Qiang Bai(柏明强), and Zhi-Wen Mo(莫智文). Chin. Phys. B, 2023, 32(11): 110302.
[5] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[6] A quantum algorithm for Toeplitz matrix-vector multiplication
Shang Gao(高尚) and Yu-Guang Yang(杨宇光). Chin. Phys. B, 2023, 32(10): 100309.
[7] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[8] A backdoor attack against quantum neural networks with limited information
Chen-Yi Huang(黄晨猗) and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2023, 32(10): 100306.
[9] Coherent manipulation of a tunable hybrid qubit via microwave control
Si-Si Gu(顾思思), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(8): 087302.
[10] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[11] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[12] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
[13] Energy shift and subharmonics induced by nonlinearity in a quantum dot system
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(6): 060303.
[14] Nonadiabatic geometric phase in a doubly driven two-level system
Weixin Liu(刘伟新), Tao Wang(汪涛), and Weidong Li(李卫东). Chin. Phys. B, 2023, 32(5): 050311.
[15] Quantum color image scaling based on bilinear interpolation
Chao Gao(高超), Ri-Gui Zhou(周日贵), and Xin Li(李鑫). Chin. Phys. B, 2023, 32(5): 050303.
No Suggested Reading articles found!