Special Issue:
SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
|
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University |
Prev
Next
|
|
|
Temperature-dependent photoluminescence of lead-free cesium tin halide perovskite microplates |
Jiayu Tan(谭佳雨), Yixuan Zhou(周译玄)†, De Lu(卢德), Xukun Feng(冯旭坤), Yuqi Liu(刘玉琪), Mengen Zhang(张蒙恩), Fangzhengyi Lu(卢方正一), Yuanyuan Huang(黄媛媛), and Xinlong Xu(徐新龙)‡ |
Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China |
|
|
Abstract Tin halide perovskites recently have attracted extensive research attention due to their similar electronic and band structures but non-toxicity compared with their lead analogues. In this work, we prepare high-quality CsSnX3 (X=Br, I) microplates with lateral sizes of around 1-4 μ m by chemical vapor deposition and investigate their low-temperature photoluminescence (PL) properties. A remarkable splitting of PL peaks of the CsSnBr3 microplate is observed at low temperatures. Besides the possible structural phase transition at below 70 K, the multi-peak fittings using Gauss functions and the power-dependent saturation phenomenon suggest that the PL could also be influenced by the conversion from the emission of bound excitons into free excitons. With the increase of temperature, the peak position shows a blueshift tendency for CsSnI3, which is governed by thermal expansion. However, the peak position of the CsSnBr3 microplate exhibits a transition from redshift to blueshift at ~ 160 K. The full width at half maximum of CsSnX3 broadens with increasing temperature, and the fitting results imply that longitudinal optical phonons dominate the electron-phonon coupling and the coupling strength is much more robust in CsSnBr3 than in CsSnI3. The PL intensity of CsSnX3 microplates is suppressed due to the enhanced non-radiative relaxation and exciton dissociation competing with radiative recombination. According to the Arrhenius law, the exciton binding energy of CsSnBr3 is ~ 38.4 meV, slightly smaller than that of CsSnI3.
|
Received: 04 July 2023
Revised: 13 September 2023
Accepted manuscript online: 12 October 2023
|
PACS:
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974279, 12074311, 12004310, and 12261141662). |
Corresponding Authors:
Yixuan Zhou
E-mail: yxzhou@nwu.edu.cn;xlxuphy@nwu.edu.cn
|
Cite this article:
Jiayu Tan(谭佳雨), Yixuan Zhou(周译玄), De Lu(卢德), Xukun Feng(冯旭坤), Yuqi Liu(刘玉琪), Mengen Zhang(张蒙恩), Fangzhengyi Lu(卢方正一), Yuanyuan Huang(黄媛媛), and Xinlong Xu(徐新龙) Temperature-dependent photoluminescence of lead-free cesium tin halide perovskite microplates 2023 Chin. Phys. B 32 117802
|
[1] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K and Gratzel M 2012 J. Am. Chem. Soc. 134 17396 [2] Ball J M, Lee M M, Hey A and Snaith H J 2013 Energy Environ. Sci. 6 1739 [3] Bi D, Yang L, Boschloo G, Hagfeldt A and Johansson E M 2013 J. Phys. Chem. Lett. 4 1532 [4] Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M and Seok S I 2013 Nat. Photonics 7 486 [5] Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Gratzel M and Park N G 2013 Nano Lett. 13 2412 [6] Laban W A and Etgar L 2013 Energy Environ. Sci. 6 3249 [7] Jishi R A, Ta O B and Sharif A A 2014 J. Phys. Chem. C 118 28344 [8] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376 [9] Liu X, Wu T, Luo X, Wang H, Furue M, Bessho T, Zhang Y, Nakazaki J, Segawa H and Han L 2021 ACS Energy Lett. 7 425 [10] Cao Y, Wang N, Tian H, et al. 2018 Nature 562 249 [11] Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G and Yang Y 2014 Nat. Commun. 5 5404 [12] Mo Q, Yu J, Chen C, Cai W, Zhao S, Li H and Zang Z 2022 Laser Photonics Rev. 16 [13] Fu Y, Zhu H, Chen J, Hautzinger M P, Zhu X Y and Jin S 2019 Nat. Rev. Mater. 4 169 [14] Fu Y, Zhu H, Stoumpos C C, Ding Q, Wang J, Kanatzidis M G, Zhu X and Jin S 2016 ACS Nano 10 7963 [15] Zhao S, Jia Z, Huang Y, Qian Q, Lin Q and Zang Z 2016 Nat. Photonics 10 585 [17] Gao Y, Pan Y, Zhou F, Niu G and Yan C 2021 J. Mater. Chem. A 9 11931 [18] De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B, Ledinsky M, Haug F J, Yum J H and Ballif C 2014 J. Phys. Chem. Lett. 5 1035 [19] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519 [20] Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636 [21] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692 [22] Faheem M B, Khan B, Feng C, Farooq M U, Raziq F, Xiao Y and Li Y 2019 ACS Energy Lett. 5 290 [23] Duan C, Zhao Z and Yuan L 2021 IEEE J. Photovolt. 11 1126 [24] Chen J, Luo Z, Fu Y, Wang X, Czech K J, Shen S, Guo L, Wright J C, Pan A and Jin S 2019 ACS Energy Lett. 4 1045 [25] Kang C, Rao H, Fang Y, Zeng J, Pan Z and Zhong X 2021 Angew. Chem. Int. Ed. 60 660 [26] Wang L M, Chen J K, Zhang B B, Liu Q, Zhou Y, Shu J, Wang Z, Shirahata N, Song B, Mohammed O F, Bakr O M and Sun H T 2021 Nanoscale 13 16726 [27] Jellicoe T C, Richter J M, Glass H F, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C and Bohm M L 2016 J. Am. Chem. Soc. 138 2941 [28] Han M, Sun J, Peng M, Han N, Chen Z, Liu D, Guo Y, Zhao S, Shan C, Xu T, Hao X, Hu W and Yang Z X 2019 J. Phys. Chem. C 123 17566 [29] Peedikakkandy L and Bhargava P 2016 RSC Adv. 6 19857 [30] Mahesh K P O, Chang C Y, Hong W L, Wen T H, Lo P H, Chiu H Z, Hsu C L, Horng S F and Chao Y C 2020 RSC Adv. 10 37161 [31] Huang L Y and Lambrecht W R L 2013 Phys. Rev. B 88 165203 [32] Wu Z Y, Zhuang J H, Lin Y T, Chou Y H, Wu P C, Wu C L, Chen P and Hsu H C 2021 ACS Nano 15 19613 [33] Xing G, Kumar M H, Chong W K, Liu X, Cai Y, Ding H, Asta M, Gratzel M, Mhaisalkar S, Mathews N and Sum T C 2016 Adv. Mater. 28 8191 [34] Gupta S, Bendikov T, Hodes G and Cahen D 2016 ACS Energy Lett. 1 1028 [35] Song T B, Yokoyama T, Aramaki S and Kanatzidis M G 2017 ACS Energy Lett. 2 897 [36] Moghe D, Wang L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V and Lunt R R 2016 Nano Energy 28 469 [37] Xu W L, Yuan H, Yang X Y, Zhang Y and Zheng M 2021 Physica E 134 114843 [38] O'donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924 [39] Fan H Y 1951 Phys. Rev. 82 900 [40] Varshni Y P 1967 Physica 34 149 [41] Rudin S and Reinecke T L 1990 Phys. Rev. B 41 3017 [42] Wright A D, Verdi C, Milot R L, Eperon G E, Perez-Osorio M A, Snaith H J, Giustino F, Johnston M B and Herz L M 2016 Nat. Commun. 7 11755 [43] Chen C, Hu X, Lu W, Chang S, Shi L, Li L, Zhong H and Han J B 2018 J. Phys. D:Appl. Phys. 51 045105 [44] Jiang D S, Jung H and Ploog K 1988 J. Appl. Phys. 64 1371 [45] Yu C, Chen Z J, Wang J, Pfenninger W, Vockic N, Kenney J T and Shum K 2011 J. Appl. Phys. 110 063526 [46] Wei K, Xu Z, Chen R, Zheng X, Cheng X and Jiang T 2016 Opt. Lett. 41 3821 [47] Wu K, Bera A, Ma C, Du Y, Yang Y, Li L and Wu T 2014 Phys. Chem. Chem. Phys. 16 22476 [48] Lee S M, Moon C J, Lim H, Lee Y, Choi M Y and Bang J 2017 J. Phys. Chem. C 121 26054 [49] Fang H H, Raissa R, Abdu-Aguye M, Adjokatse S, Blake G R, Even J and Loi M A 2015 Adv. Funct. Mater. 25 2378 [50] Wehrenfennig C, Liu M, Snaith H J, Johnston M B and Herz L M 2014 APL Mater. 2 081513 [51] Diab H, Trippe-Allard G, Ledee F, Jemli K, Vilar C, Bouchez G, Jacques V L, Tejeda A, Even J, Lauret J S, Deleporte E and Garrot D 2016 J. Phys. Chem. Lett. 7 5093 [52] Fabini D H, Laurita G, Bechtel J S, Stoumpos C C, Evans H A, Kontos A G, Raptis Y S, Falaras P, Van Der Ven A, Kanatzidis M G and Seshadri R 2016 J. Am. Chem. Soc. 138 11820 [53] Singh S, Kumar M, Jha P K, Jha P A and Singh P 2023 Europhys. Lett. 141 26001 [54] Mori M and Saito H 1986 J. Phys. C:Solid State Phys. 19 2391 [55] Gao L, Yadgarov L, Sharma R, Korobko R, Mccall K M, Fabini D H, Stoumpos C C, Kanatzidis M G, Rappe A M and Yaffe O 2021 Mater. Adv. 2 4610 [56] Korn T, Heydrich S, Hirmer M, Schmutzler J and Schüller C 2011 Appl. Phys. Lett. 99 102109 [57] Shum K, Chen Z, Qureshi J, Yu C, Wang J J, Pfenninger W, Vockic N, Midgley J and Kenney J T 2010 Appl. Phys. Lett. 96 221903 [58] Kontos A G, Kaltzoglou A, Arfanis M K, Mccall K M, Stoumpos C C, Wessels B W, Falaras P and Kanatzidis M G 2018 J. Phys. Chem. C 122 26353 [59] Allen P B and Cardona M 1983 Phys. Rev. B 27 4760 [60] Lautenschlager P, Allen P B and Cardona M 1985 Phys. Rev. B:Condens. Matter 31 2163 [61] Göbel A, Ruf T, Cardona M, Lin C T, Wrzesinski J, Steube M, Reimann K, Merle J C and Joucla M 1998 Phys. Rev. B 57 15183 [62] Vicena F 1955 Czechoslov. J. Phys. 5 499 [63] Keffer C, Hayes T M and Bienenstock A 1968 Phys. Rev. Lett. 21 1676 [64] Cardona M 2005 Solid State Commun. 133 3 [65] Lee J, Koteles E S and Vassell M O 1986 Phys. Rev. B 33 5512 [66] Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C and Lam Y M 2014 Energ. Environ. Sci. 7 399 [67] Yangui A, Pillet S, Mlayah A, Lusson A, Bouchez G, Triki S, Abid Y and Boukheddaden K 2015 J. Chem. Phys. 143 224201 [68] Fujisawa J I and Ishihara T 2004 Phys. Rev. B 70 205330 [69] Ishihara T, Takahashi J and Goto T 1990 Phys. Rev. B 42 11099 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|